Au cours des vingt dernières années, les études sur les sédiments marins profonds ont révélé la présence et l'activité de communautés microbiennes inattendues. Il est maintenant formellement établi que la biosphère profonde héberge de nombreux représentants des domaines des Archaea et des Bacteria. Cependant,les micro-eucaryotes et plus particulièrement les champignons n’ont été que très peu étudiés dans ces écosystèmes singuliers. Dans ce contexte, des approches moléculaire et culturale ont été utilisées afin de caractériser la diversité des communautés fongiques des sédiments marins profonds en utilisant le bassin de Canterbury comme modèle d’étude. Les résultats principaux obtenus lors de ce travail de thèse sont les suivants : (i) L’approche moléculaire basée sur l’ADN a fourni la preuve directe que les communautés fongiques peuvent persister jusqu’à la profondeur record de 1740 mètres sous la surface du plancher océanique. (ii) Des approches complémentaires ciblant les ARNr et les ARNm ont permis de préciser leur activité métabolique et d’obtenir de premiers indices sur les fonctions de ces champignons à 350m sous la surface du plancher océanique, principalement liées à la croissance, à l’adaptation aux contraintes environnementales in situ et aux interactions entre communautés microbiennes. (iii) L’approche culturale a permis de constituer une collection de culture de 183 isolats fongiques avec des caractéristiques écophysiologiques témoignant leur capacité d’adaptation aux conditions in situ. (iv) Le potentiel biotechnologique des isolats obtenus a été estimé via la recherche de gènes impliqués dans la synthèse de métabolites secondaires et a permis de positionner cette collection d’organismes originaux comme une ressource d’intérêt biotechnologique potentiel. Ce travail qui témoigne de la persistance et de l’activité des communautés fongiques dans les sédiments marins profonds élargit notre vision de la diversité microbienne dans ces milieux et soulève des hypothèses sur le rôle écologique des champignons au sein de la biosphère profonde. / Over the past two decades, investigations on deep marine sediments have revealed the occurrenceand activity of unexpected microbial communities. Many representatives of Archaea and Bacteria were reportedbut micro-eukaryotes and especially fungal communities are still poorly studied in this ecosystem. In this underexplored context, molecular- and culture-based approaches were used to characterize the diversityof fungal communities in deep subsurface sediments using the Canterbury Basin as a model system. The main results of this work are: (i) The molecular DNA-based approach provided direct evidence that the fungal communities persist until the record depth of 1,740 meters below sea floor. (ii) Supplementary approaches targeting rRNA and mRNA revealed their metabolic activity and highlighted first hints into the fungal functions at350 meters below sea floor, mainly related to growth, adaptation to in situ environmental constraints andmicrobial interactions. (iii) The culture based approach allowed establishing a culture collection of 183 fungal isolates with ecophysiological characteristics indicating their ability to adapt to in situ conditions. (iv) This culture collection seems to represent a reservoir of secondary metabolites as many genes involved in secondary metabolites pathways were revealed. The fungal collection established may be considered as an untapped resource to explore for biotechnological applications. This work demonstrating the persistence and activity of fungal communities in deep subsurface sediments (i)broadens our view of microbial diversity in these environments and (ii) raises hypotheses about the ecologicalroles of fungi in the deep biosphere
Identifer | oai:union.ndltd.org:theses.fr/2014BRES0095 |
Date | 27 October 2014 |
Creators | Rédou, Vanessa |
Contributors | Brest, Barbier, Georges |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.2139 seconds