Polyethylene terephthalate multifilament fabrics used as filtration and operating room textiles possess through-thickness pore channels at the yarn intersections (mesopores). These pore channels pose a risk for the penetration of contaminated fluids and particles. The size of pore channels may be reduced by high-density weaving. However, this leads to reduced drapability and thus to degraded application properties of the fabric. To satisfy the requirements without impeding the physiological properties of the textile, fluid- and particle-tight fabrics are developed. This was realized by partial immobilization of functionalized micro particles into the meso-pores. A reduction of the pore size without complete pore-closure is achieved by establishing a net-like particle structure in the meso-pores. To match the requirements of intensive use, permanent particle-bonding to the fiber surface is necessary. This can be achieved by suitable polyethylene terephthalate fabric surface-modification, dependent on the particle functionalization. The investigations have shown that functionalized particles establish a very good inter particle bonding as well as to the fiber surface. An increased permanent bonding can be realized by a modification of the fabric surface which is tuned to the functionalization of the particle.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35616 |
Date | 09 October 2019 |
Creators | Kuhr, Marlena, Synytska, Alla, Bellmann, C., Aibibu, Dilbar, Cherif, Chokri |
Publisher | Sage |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1530-8057, 10.1177/1528083715584139 |
Page generated in 0.0114 seconds