Return to search

Generation of Thermotropic Liquid Crystalline Polymer (TLCP)-Thermoplastic Composite Filaments and Their Processing in Fused Filament Fabrication (FFF)

One of the major limitations in Fused Filament Fabrication (FFF), a form of additive manufacturing, is the lack of composites with superior mechanical properties. Traditionally, carbon and glass fibers are widely used to improve the physical properties of polymeric matrices. However, the blending methods lead to fiber breakage, preventing generation of long fiber reinforced filaments essential for printing load-bearing components. Our approach to improve tensile properties of the printed parts was to use in-situ composites to avoid fiber breakage during filament generation. In the filaments generated, we used thermotropic liquid crystalline polymers (TLCPs) to reinforce acrylonitrile butadiene styrene (ABS) and a high performance thermoplastic, polyphenylene sulfide (PPS). The TLCPs are composed of rod-like monomers which are highly aligned under extensional kinematics imparting excellent one-dimensional tensile properties. The tensile strength and modulus of the 40 wt.% TLCP/ABS filaments was improved by 7 and 20 times, respectively. On the other hand, the 67 wt.% TLCP/PPS filament tensile strength and modulus were improved by 2 and 12 times, respectively.

The filaments were generated using dual extrusion technology to produce nearly continuously reinforced filaments and to avoid matrix degradation. Rheological tests were taken advantage of to determine the processing conditions. Dual extrusion technology allowed plasticating the matrix and the reinforcing polymer separately in different extruders. Then continuous streams of TLCP were injected below the TLCP melting temperature into the matrix polymer to avoid matrix degradation. The blend was then passed through a series of static mixers, subdividing the layers into finer streams, eventually leading to nearly continuous fibrils which were an order of magnitude lower in diameter than those of the carbon and glass fibers.

The composite filaments were printed below the melting temperature of the TLCPs, and the conditions were determined to avoid the relaxation of the order in the TLCPs. On printing, a matrix-like printing performance was obtained, such that the printer was able to take sharp turns in comparison with the traditionally used fibers. Moreover, the filaments led to a significant improvement in the tensile properties on using in FFF and other conventional technologies such as injection and compression molding. / Doctor of Philosophy / In this work two thermoplastic matrices, acrylonitrile butadiene styrene (ABS) and polyphenylene sulfide (PPS), were reinforced with higher melting thermoplastics of superior properties called thermotropic liquid crystalline polymers (TLCPs). This was done so that the resulting filaments could be 3D-printed without melting the TLCPs. The goal of this work was to generate nearly continuous reinforcement in the filaments and to avoid matrix degradation, and, hence, a technology called dual extrusion technology was used for the filament generation. The temperatures required for filament generation were determined using rheology, which involves the study of flow behavior of complex fluids.

Dual extrusion technology allows processing of the constituent polymers separately at different temperatures, followed by a continuous injection of multiple TLCP-streams into the matrix polymers. In addition, the use of static mixers (metallic components kept in the path of flow to striate incoming streams) leads to further divisions of the TLCP-streams which are eventually drawn by pulling to orient the TLCP phase. The resulting filaments exhibited specific properties (normalized tensile properties) higher than aluminum and contained fibers that were nearly continuous, highly oriented, and an order in magnitude lower in diameter than those of carbon and glass fiber, which are commonly used reinforcements. High alignment and lower fiber diameter are essential for printing smoother printed parts.

The filaments were intended to be printed without melting the TLCPs. However, previous studies involving the use of TLCP reinforced composites in conventional technologies have reported the occurrence of orientation relaxation on postprocessing, which decreases their tensile v properties. Therefore, temperatures required for 3D printing were determined using compression molding to retain filament properties on printing to the maximum extent. On printing using an unmodified 3D printer, parts were printed by taking 180ยบ turns during material deposition. Contrarily, the use of continuous carbon fibers required a modified 3D printer to allow impregnation during 3D printing. Moreover, the performance comparison showed that the continuous carbon fibers could not be deposited in tighter loops. The properties of the printed parts were higher than those obtained on using short fibers and approaching those of the continuous fiber composites.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99885
Date11 March 2019
CreatorsAnsari, Mubashir Qamar
ContributorsChemical Engineering, Baird, Donald G., Williams, Christopher B., Bortner, Michael J., Davis, Richey M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds