Return to search

Using Fuzzy Rule Induction for Mining Classification Knowledge

With the computerization of businesses, more and more data are generated and stored in databases for many business applications. Finding interesting patterns among those data may lead to useful knowledge that provides competitive advantage in business. Knowledge discovery in database has thus become an important issue to help business acquire knowledge that assists managerial and operational work. Among many types of knowledge, classification knowledge is widely used. Most classification rules learned by induction algorithms are in the crisp form. Fuzzy linguistic representation of rules, however, is much closer to the way human reasons. The objective of this research is to propose a method to mine classification knowledge from the database with fuzzy descriptions. The procedure contains five steps, starting from data preparation to rule pruning. A rule induction algorithm, RITIO, is employed to generate the classification rules. Fuzzy inference mechanism that includes fuzzy matching and output reasoning is specified to yield the output class. An experiment is conducted using several databases to show advantages of this work. The proposed method is justified with good system performance. It can be easily implemented in various business applications on classification tasks.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0802100-144455
Date02 August 2000
CreatorsChen, Kun-Hsien
ContributorsTe-Min Chang, Fen-Hui Lin, Fu-Ren Lin
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0802100-144455
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0021 seconds