Les tables de mortalité sont utilisées pour décrire la probabilité annuelle de décès d'une population en fonction de l'âge atteint et de l'année calendaire. Ces probabilités jouent un rôle important dans la détermination des primes et réserves en assurance vie. Les estimations brutes, sur lesquelles se basent les tables de mortalité, peuvent être considérées comme un échantillon provenant d'une population plus importante et sont, par conséquent, soumises à des fluctuations aléatoires. Toutefois, l'actuaire souhaite la plupart du temps lisser ces quantités afin de faire ressortir les caractéristiques de la mortalité du groupe considéré qu'il pense être relativement régulières. Cette dissertation fournit une description détaillée des méthodes de graduation non-paramétrique de données d'expérience issues de l'assurance vie. Le terme non-paramétrique renvoie à une forme fonctionnelle de la courbe de régression. Comme les méthodes paramétriques, elles sont toutes aussi susceptibles de donner des estimations biaisées, mais de telle sorte qu'il est possible de compenser une augmentation du biais avec une diminution de la variation de l'échantillonnage. Dans la littérature actuarielle, le processus de lisser une table de mortalité est appelé graduation. Les collines et vallées des données brutes sont lissées de façon similaire á la construction d'une route sur un terrain accidenté. Le lissage seul, cependant, n'est pas la graduation. Les taux gradués doivent être représentatifs des données sous-jacentes et la graduation se révélera souvent comme un compromis entre ajustement et lissage optimal. Les régressions polynomiales locales et méthodes de vraisemblance locale sont examinées en détail. Les questions importantes concernant le choix des paramètres de lissage, les propriétés statistiques des estimateurs, les critères utilisés pour la sélection des modèles, la construction des intervalles de confiance ainsi que les comparaisons entre les modèles sont ouvertes avec des illustrations numériques et graphiques. Les techniques non-paramétriques locales combinent d'excellentes propriétés théoriques avec une simplicité et une flexibilité conceptuelle pour trouver une structure dans de nombreuses bases de données. Une attention particulère est consacrée à l'influence des bordures sur le choix des paramètres de lissage. Ces considérations illustrent le besoin d'avoir à disposition des approches plus flexibles. Des méthodes adaptatives de vraisemblance locale sont alors introduites. Le montant de lissage varie en fonction de l'emplacement et ces approches permettent des ajustements de la fenêtre d'observation en fonction de la fiabilité des données. Ces méthodes s'adaptent parfaitement à la complexité de la surface de mortalité en raison du choix adaptatif approprié des paramètres de lissage. Enfin, ce manuscrit traite de sujets importants pour les praticiens. Ceux-ci concernent la construction et la validation de tables de mortalité prospectives pour des portefeuilles d'assurance, l'évaluation du risque de modèle, et dans une moindre mesure, du risque d'opinion d'experts lié au choix de la table de référence externe utilisée.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00778755 |
Date | 18 January 2013 |
Creators | Tomas, Julien |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0025 seconds