Return to search

Segmentation et construction de descripteurs appliqués à des nuages de points à grande échelle pour la géolocalisation d'un véhicule semi-autonome

Dans ce mémoire nous présentons une méthode pour référencer deux nuages de points denses. Cette méthode commence par l'analyse d'un nuage de points de grand volume, composé d’environ 2 millions de points recueillis par un LiDAR (Light Detection And Ranging) monté sur une voiture, afin de le segmenter en surfaces représentatives pertinentes en termes de géométrie et de localisation. Ensuite, nous présentons la construction de descripteurs pour chacun des segments trouvés afin d’obtenir des caractéristiques significatives des segments. Ces descripteurs sont le FPFH (Fast Point Feature Histograms) et l’histogramme des orientations de surface. Pour finir, les descripteurs recueillis sur deux nuages de points différents du même environnement extérieur sont comparés pour repérer les segments similaires et ainsi permettre la localisation du véhicule par rapport à l'environnement extérieur. / In this work we present a method to reference two dense point clouds. We begin by analyzing a point cloud of a large number of points, approximately 2 million points collected by a LiDAR mounted on a car, in order to segment this point cloud into surfaces that feature representative regions of the point cloud that are interesting in terms of geometry. Then the construction of descriptors for each segment found is made to identify significant features. These descriptors are the FPFH (Fast Point Feature Histograms) and the surface orientation histogram. Finally, the descriptors collected on two different point clouds of the same outdoor environment are compared to identify similar segments and thus to allow the location of the vehicle in relation to the outdoor environment.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/70398
Date02 February 2024
CreatorsRousseau, Kévin
ContributorsDaniel, Sylvie, Laurendeau, Denis
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (viii, 37 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.002 seconds