Return to search

Partial actions in algebraic geometry

We introduce geometrically partial comodules over coalgebras in monoidal categories, as an alternative notion to the notion of partial action and coaction of Hopf algebras introduced by Caenepeel and Janssen. We show that our new notion suits better if one wants to describe phenomena of partial actions in algebraic geometry. We show that under mild conditions, the category of geometric partial comodules is complete and cocomplete and the category of partial comodules over a Hopf algebra is lax monoidal. We develop a Hopf-Galois theory for geometric partial coactions to illustrate that our new notion might be a useful additional tool in Hopf algebra theory. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/273459
Date04 July 2018
CreatorsHu, Jiawei
ContributorsVercruysse, Joost, Tan, Sheng-Li TSL, D'Adderio, Michele, Fine, Joel, Caenepeel, Stefaan, Batista, Eliezer, Du, Rong DR
PublisherUniversite Libre de Bruxelles, East China Normal University, Université libre de Bruxelles, Faculté des Sciences – Mathématiques, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
FormatNo full-text files

Page generated in 0.0016 seconds