Le problème abordé dans cette thèse est celui de l'existence de métriques extrémales. Si (M, J, g) est une variété kahlérienne compacte, une métrique extrémale est une métrique kählérienne dont la norme L2 de la courbure scalaire est minimale pour les métriques représentant la même classe de Kähler. On propose de nouvelles constructions de métriques extrémales utilisant des méthodes perturbatives. Dans un premier temps, on montre que si (M, J, g) est une surface orbifold extrémale qui ne possède que des singularités isolées de type Hirzebruch-Jung, alors une résolution de (M, J) admet une métrique extrémale. On donne des applications de ce résultat sur l'existence de métriques extrémales sur les éclatements de surfaces réglées paraboliques. Dans une seconde partie, on etudie la stabilié des métriques extrémales sous déformations complexes. Ceci est un travail réalisé en collaboration avec Yann Rollin et Santiago Simanca. On donne un critère suffisant pour assurer la stabilité d'une métrique extrémale lors d'une déformation complexe munie d'une action holomorphe d'un groupe compact. On généralise ainsi des résultats de S.Simanca et C.Lebrun. Ceci nous permet également de retrouver un résultat de S.Donaldson, a savoir une métrique Kähler-Einstein sur une déformation de la variété de Mukai et Umemura.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00676452 |
Date | 05 December 2011 |
Creators | Tipler, Carl |
Publisher | Université de Nantes |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds