Object recognition is one of many tasks in which the computer is still behind the human. Therefore, development in this area takes inspiration from nature and especially from the function of the human brain. This work focuses on object recognition based on extracting relevant information from images, features. Features are obtained in a similar way as the human brain processes visual stimuli. Subsequently, these features are used to train classifiers for object recognition (e.g. SVM, k-NN, ANN). This work examines the feature extraction stage. Its aim is to improve the feature extraction and thereby increase performance of object recognition by computer.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:237033 |
Date | January 2011 |
Creators | Vaľko, Tomáš |
Contributors | Hradiš, Michal, Juránek, Roman |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds