Title: Neuro Biomechanical principles in robot-assisted gait training for pediatric patients Background: There is a lack of data on how robot-assisted gait training (RAGT) contributes to gait changes in children with cerebral palsy (CP). Methods: This research study investigated efficacy of a 4-week RAGT intervention in twelve ambulatory spastic diparesis children with CP (10.8±2.6 years old; 2 girls and 10 boys; Gross Motor Function Classification System I-III) by using computerized gait analysis (CGA); passive joint range of motion (PROM); selective control assessment of lower limbs evaluation (SCALE), and the six-minute walk test (6MWT). Pre-post RAGT intervention data of children with CP was compared with the normative data curves of typically developing children by cross-correlation, and further statistically evaluated by a Wilcoxon test. Results: Significant pre-post RAGT intervention differences (p<0.05) that indicate more physiological gait comparing to the normative data curves were found. Biceps femoris, rectus femoris, and tibialis anterior decreased activity almost across all gait cycle phases. Medial gastrocnemius decreased activity mainly in terminal stance, mid-swing, and terminal swing phases. Internal hip rotations and foot progress angles decreased almost across all gait cycle...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:453234 |
Date | January 2021 |
Creators | Žarković, Dragana |
Contributors | Šorfová, Monika, Mařík, Ivo, Lopot, František |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.013 seconds