Return to search

Analyzing Interactions Between Cells And Extracellular Matrix By Atomic Force Microscopy

Interactions of cells with the extracellular matrix (ECM) have important roles in various physiological and pathological processes, including tissue morphogenesis during embryonic development, wound healing and tumor invasion. Although most of the proteins involved in cell-ECM interactions have been identified, the underlying mechanisms and involved signaling pathways are incompletely understood. Here, atomic force microscope-based imaging and single-cell force measurements were used to characterize the interactions of different cell types with ECM proteins.
The interplay between cells and ECM is complex. However, two interaction types, protein-protein and protein-carbohydrate, predominate. Integrins, adhesion receptors for ECM, mediate the former, galectins, a family of animal lectins, the latter. In the second chapter of this thesis, the contributions of both receptor families to the interactions of epithelial MDCK cells with ECM proteins are presented. It was found that galectins-3 and 9 are highly expressed in MDCK cells and required for optimal long-term adhesion (90 minutes) to ECM proteins collagen-I and laminin-111. Interestingly, early adhesion (< 2 minutes) to laminin-111, was integrin-independent and instead mediated by carbohydrate interactions and galectins. In contrast, early adhesion to collagen-I was exclusively mediated by integrins. Moreover, cells frequently entered an enhanced adhesion state, marked by a significant increase in the force required for cell detachment. Although adhesion was mediated by integrins, adhesion enhancement was especially observed in cells depleted for galectin-3. It was proposed that galectin-3 influences integrin-mediated adhesion complex formation by altering receptor clustering.
To control their attachment to ECM proteins, cells regulate integrin receptors. One regulatory process is integrin crosstalk, where the binding of one type of integrin influences the activity of another type. In the third chapter, the implementation of a single-cell force spectroscopy assay to identify such crosstalks and gain insight into their mechanisms is described. In this assay the interactions of integrin receptors being specifically attached to one ligand are characterized in dependence of another ligand-bond receptor pair. With this assay a crosstalk between collagen-binding integrin α1β1 and fibronectin-binding integrin α5β1 was identified in HeLa cells. This crosstalk was directional from integrin α1β1 to integrin α5β1 and appeared to regulate integrin α5β1 by inducing its endocytosis.
In the fourth and final chapter, mechanisms of matrix-induced cell alignment were studied by imaging cells on two-dimensional matrices assembled of highly aligned collagen fibrils. Integrin α2β1 was identified as the predominant receptor mediating cell polarization. Time-lapse AFM demonstrated that during alignment cells deform the matrix by reorienting individual collagen fibrils. Cells deformed the collagen matrix asymmetrically, revealing an anisotropy in matrix rigidity. When matrix rigidity was rendered uniform by chemical cross-linking or when the matrix was formed from collagen fibrils of reduced tensile strength, cell polarization did not occur. This suggested that both the high tensile strength and pliability of collagen fibrils contribute to the anisotropic rigidity of the matrix and lead to directional cellular traction and cell polarization. During alignment, cellular protrusions contacted the collagen matrix from below and above. This complex entanglement of cellular protrusions and collagen fibrils may further promote cell alignment by maximizing cellular traction.

The work presented here adds to the understanding of cell-ECM interactions. Atomic force microscopy imaging allowed characterizing the behavior of cells on nanopatterned collagen matrices whereas single-cell force spectroscopy revealed insights into the regulation of cell adhesion by galectins. Furthermore, methodological advances in the single-cell force spectroscopy assay allowed the intracellular regulation of receptor molecules to be studied. The work demonstrates that atomic force microscopy is a versatile tool to study cell-ECM interactions.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25139
Date11 November 2009
CreatorsFriedrichs, Jens
ContributorsMüller, Daniel J., Werner, Carsten
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds