In this thesis we investigate the convergence rate of gamma kernel estimators in recursive density estimation. Unlike the traditional symmetric and fixed function, the gamma kernel is a kernel function with bounded support and varying shapes. Gamma kernels have been used to address the boundary bias problem which occurs when a symmetric kernel is used to estimate a density which has support on [0, ?). The recursive density estimation is useful when an 'additional data' (on-line) comes from the population density which we want to estimate. We utilize the ideas and results from the adaptive kernel estimation to show that the L_2 convergence rate of the recursive kernel density estimators which use gamma kernels is n^(-4/5).
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4357 |
Date | 09 August 2019 |
Creators | Ma, Xiaoxiao |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds