Return to search

Innovative twisting mechanism based on superconducting technology in a ring-spinning system

Twist plays an important role to impart tensile strength in yarn during the spinning process. In the most widely used ring-spinning machine for short staple yarn production, a combination of ring and traveler is used for inserting twist and winding the yarn on cops. The main limitation of this twisting mechanism is the friction between the ring and traveler, which generates heat at higher speed and limits the productivity. This limitation can be overcome by the implementation of a magnetic bearing system based on superconducting technology, which replaces completely the existing ring/traveler system of the ring-spinning machine. This superconducting magnet bearing consists of a circular superconductor and permanent magnet ring. After cooling the superconductor below its transition temperature, the permanent magnet ring levitates and is free to rotate above the superconductor ring according to the principles of superconducting levitation and pinning. Thus the superconducting magnetic bearing (SMB) ensures a friction-free operation during spinning and allows one to increase spindle speed and productivity drastically. The yarn properties using the SMB system have also been investigated and they remain nearly identical to those of conventional ring yarns.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35397
Date17 September 2019
CreatorsHossain, Mahmud, Abdkader, Anwar, Cherif, Chokri, Sparing, Maria, Berger, Dietmar, Fuchs, Günter, Schultz, Ludwig
PublisherSage
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1746-7748, 10.1177/0040517513512393

Page generated in 0.0025 seconds