Return to search

The study on the structure of the gas diffusion layer of a DMFC electrode

Due to the micro-pillar-structured electrodes were made in the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC), the cell performance was raised significantly; the study therefore aims to understand whether the same cell performance can be achieved if the micro-pillar-structures were made in the direct methanol fuel cell (DMFC) of the anode.
At room temperature and naturally breathed air, the performance of the micro-pillar-structured electrodes was the same as the conventional electrodes. The performance of the electrodes does not rely on the surface area between the micro porous layers and the catalyst. The experimental results inference indicates that no efficiency can be completed. The study then changed the experimental condition, i.e. increased the temperature of the methanol-water solution to 50¢J and reduced the methanol concentrations to 0.5M. The purpose was to carry out the reaction of the surface between the methanol and the catalyst layer. However, the experimental result shows no variation between the micro-pillar- structured electrodes and the conventional electrodes.
Because of the test of the current density of the DMFC was carried out in a small power (0~25mW/cm2). The current density of the PEMFC was carried out in a high power (400mW/cm2 ~). The study proposed that the cell operating temperature can be raised and the oxygen can be put in the cathode, the performance of the micro-pillar-structured electrodes can thus be enhanced if the reaction was in a high current density.
At the finals, the study tried to compare the efficiency between self-made electrodes and commercial electrodes (E-TEK). The result showed that both max power densities can reach 17mW/cm2 at room temperature and naturally breathed air.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0911107-113927
Date11 September 2007
CreatorsShen, Jia-shiun
ContributorsPeng-Sheng Wei, Long-Jeng Chen, Ming-San Lee, Chien-Hsiang Chao, Chorng-Fuh Liu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911107-113927
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0021 seconds