Return to search

An Integrated, Dynamic Model For Cardiovascular And Pulmonary Systems

In this thesis an integrated, dynamic model for cardiovascular and respiratory systems has been developed. Models of cardiopulmonary system, airway mechanics and gas exchange that preexisted in literature have been reviewed, modified and combined. Combined model composes the systemic and pulmonary circulations, left/right ventricles, tissue/lung compartments, airway/lung mechanics and gas transportation. Airway resistance is partitioned into three parts (upper, middle, small airways). A collapsible airways segment and a viscoelastic element describing lung tissue dynamics and a static chest wall compliance are included. Frank-Starling Law, Bowditch effect and variable cerebral flow are also employed in the model.

The combined model predictions have been validated by laboratory data collected from two healthy, young, male subjects, by performing dynamic bicycle exercise tests, using Vmax 229 Sensormedics, Cardiopulmonary Exercise Testing Instrument. The transition from rest to exercise under a constant ergometric workload is simulated. The initial anaerobic energy supply, autoregulation and the dilatation of pulmonary vessels are considered. Mean arterial blood pressure and the blood gas concentrations are assumed to be regulated by the controllers of the central nervous system namely, the heart rate and alveolar ventilation. Cardiovascular and respiratory regulation is modeled by a linear feedback control which minimizes a quadratic cost functional.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12607650/index.pdf
Date01 September 2006
CreatorsYilmaz, Neval A.
ContributorsEyuboglu, Murat B.
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0016 seconds