Return to search

Synthesis and Characterization of Films and Membranes of Metal-Organic Framework (MOF) for Gas Separation Applications

Metal-Organic Frameworks (MOFs) are nanoporous framework materials with tunable pore size and functionality, and hence attractive for gas separation membrane applications. Zeolitic Imidazolate Frameworks (ZIFs), a subclass of MOFs, are known for their high thermal and chemical stability. ZIF-8 has demonstrated potential to kinetically separate propane/propene in powder and membrane form. ZIF-8 membranes propane-propene separation performance is superior in comparison to polymer, mixed matrix and carbon membranes.

The overarching theme of my research is to address challenges that hinder fabrication of MOF membranes on a commercial scale and in a reproducible and scalable manner. 1. Current approaches, are specific to a given ZIF, a general synthesis route is not available. Use of multiple steps for surface modification or seeding causes reproducibility and scalability issues. 2. Conventional fabrication techniques are batch processes, thereby limiting their commercialization. Here we demonstrate two new approaches that can potentially address these challenges.

First, we report one step in situ synthesis of ZIF-8 membranes on more commonly used porous α-alumina supports. By incorporating sodium formate in the in situ growth solution, well intergrown ZIF-8 membranes were synthesized on unmodified supports. The mechanism by which sodium formate promotes heterogeneous nucleation was investigated. Sodium formate reacts with zinc source to form zinc oxide layer, which in turn promotes heterogeneous nucleation. Sodium formate promotes heterogeneous nucleation in other ZIF systems as well, leading to ZIF-7, Zn(Im)2 (ZIF-61 analogue), ZIF-90, and SIM-1 films. Thus one step in situ growth using sodium formate provides a simplified, reproducible and potentially general route for ZIF film fabrication.

One step in situ route, although advantageous; is still conventional in nature and batch process with long synthesis time. This limits commercialization, due to scalability and manufacturing cost issues. Taking advantage of coordination chemistry of MOFs and using temperature as driving force, continuous well-intergrown membranes of HKUST-1 and ZIF-8 in relatively short time (15 min) using Rapid Thermal Deposition (RTD). With minimum precursor consumption and simplified synthesis protocol, RTD provides potential for a continuous, scalable, reproducible and commercializable route for MOF membrane fabrication. RTD-prepared MOF membranes show improved separation performances, indicating improved microstructure.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/148212
Date14 March 2013
CreatorsShah, Miral Naresh 1987-
ContributorsJeong, Hae-Kwon, Akbulut, Mustafa, Zhou, Hong-Cai (Joe)
Source SetsTexas A and M University
Detected LanguageEnglish
TypeThesis, text
Formatapplication/pdf

Page generated in 0.0113 seconds