This research investigates effects of tensile stresses in liquids. Areas of application include bearing lubrication and polymer processing, in which liquids may be subjected to hydrostatic tension or large shear stresses.
A primary thrust of this research is the development of a criterion for liquid failure, or cavitation, based upon the general state of stress in the liquid. A variable pressure, rotating inner cylinder, Couette viscometer has been designed and used to test a hypothesized cavitation criterion. The criterion, that cavitation will occur when a principal normal stress in a liquid becomes more tensile than some critical stress, is supported by the results of experiments with the viscometer for a Newtonian liquid. Based upon experimental observation of cavitation, a model for cavitation inception from crevice stabilized gas nuclei, and gaseous, as opposed to vaporous, cavitation is hypothesized.
The cavitation inception model is investigated through numerical simulation, primarily using the boundary element method. Only Newtonian liquids are modeled, and, for simulation purposes, the model is reduced to two dimensions and the limit of negligible inertia is considered. The model includes contact line dynamics. Mass transport of dissolved gas through the liquid and in or out of the gas nucleus is considered. The numerical simulations provide important information about the probable nature of cavitation nucleation sites as well as conditions for cavitation inception.
The cavitation criterion predicts cavitation in simple shear, which has implications for rheological measurements. It can cause apparent shear thinning and thixotropy. Additionally, there is evidence suggesting a possible link between shear cavitation and extrusion defects such as sharkskin. A variable pressure capillary tube viscometer was designed and constructed to investigate a hypothesized relationship between shear cavitation and extrusion defects. Results indicate that despite the occasional coincidence of occurrence of cavitation and sharkskin defects, cavitation cannot explain the onset of extrusion defects.
If nuclei are removed, then liquids can withstand a negative hydrostatic pressure. A falling body viscometer has been constructed and used to investigate the effect of negative pressures on viscosity. It is found that current pressure viscosity models can be accurately extrapolated to experimentally achievable negative pressures.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/5015 |
Date | 07 July 2004 |
Creators | Kottke, Peter Arthur |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 1866965 bytes, application/pdf |
Page generated in 0.0019 seconds