Neste trabalho estuda-se a aplicação de métodos estatísticos multivariáveis para a classificação de gasolinas comerciais em conformidade à legislação vigente. Atualmente, a ANP baseia a classificação em limites máximos e mínimos para uma série de diferentes propriedades físico-químicas. O objetivo do trabalho é propor uma metodologia para fazer uma triagem das amostras coletadas durante o Programa de Monitoramento da Qualidade dos Combustíveis através de um método de classificação. Ela utiliza a espectroscopia NIR, que é uma técnica rápida e não destrutiva, como método analítico. Com isto será possível reduzir o número de ensaios físico-químicos que não necessariamente seriam realizados sistematicamente em todas as amostras, reduzindo-se os custos e aumentando-se a quantidade de postos monitorados. As análises NIR produzem grandes quantidades de dados, o que leva à utilização de técnicas estatísticas multivariáveis para estabelecer as metodologias de classificação. Neste trabalho utilizam-se técnicas já consagradas, como a PCA e a PLS para a compressão dos dados e a LDA e QDA para a classificação das amostras. Os dados analisados correspondem às propriedades físico-químicas e aos espectros NIR de um conjunto de 216 amostras de gasolinas comerciais, utilizado para a concepção dos modelos de classificação, e de outro de 50 amostras, utilizado para a validação dos modelos. Os modelos testados no trabalho foram as combinações da PCA-LDA, PCA-QDA, PLS-LDA, PLS-QDA, PLS (regressão) e a análise dos gráficos de scores (biplot). Os melhores desempenhos foram obtidos pelos gráficos dos scores, em seguida pela regressão PLS, PLS-QDA, PCA-QDA e PLS-QDA. Existem ainda algumas etapas a serem alcançadas para tornar prática a utilização da classificação de gasolinas comerciais através de NIR, no entanto, a contribuição deste estudo é importante pois permitiu demonstrar a sua viabilidade técnica. / In this work, the application of multivariable statistical methods for the classification of commercial gasoline in accordance to applicable laws in Brazil is studied. In the present, the ANP bases the classification of gasoline on lower and upper bounds defined for a number of physico-chemical properties. The objective of this work is to propose an alternative analysis methodology, that is adequate for making a pre-sorting of the samples collected by the Fuel Quality Monitoring Program through a classification method. This method is based on NIR spectroscopy, that is a fast and non-destructive technique, as the analytical method. In this way, it would be possible to reduce the number of physico-chemical analyses, as it would be possible not to perform them on every sample, reducing costs and increasing the quantity and frequency of gas stations that could be monitored. NIR analyses produce a great quantity of data, that makes the use of multivariable statistical techniques necessary in order to set up classification methodologies. In this work the well-known PCA and PLS techniques are used for data compression, and LDA and QDA analyses for sample classification. The data studied correspond to the physico-chemical properties and NIR spectra of a total of 216 commercial gasoline samples, used for model design, and of a 50 samples, used for validation. The classification methods that are tested are combinations of PCA-LDA, PCA-QDA, PLS-LDA, PLS-QDA, PLS (regression) and data compression scores graphical analysis (biplot). Best performance was obtained with compression scores graphical analysis, followed by PLS regression, PLS-QDA, PCA-QDA and PLS-QDA. There are still some steps to be fulfilled before the usage of commercial gasoline classification through NIR could be practical. However, this study has shown that this methodology is technically feasible.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06042006-132932 |
Date | 29 March 2005 |
Creators | Mendonça, Marcelo Aparecido |
Contributors | Roux, Galo Antonio Carrillo Le |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo somente para a comunidade da Universidade de São Paulo. |
Page generated in 0.0161 seconds