Return to search

The study of humoral inhibition of gastric acid secretion

Part I Inhibition of Gastric Acid Secretion
Fat in the small bowel is a powerful inhibitor of gastric acid secretion. The gastric inhibitory agent(s) liberated from intestinal mucosa by the presence of fat has been named enterogastrone. Gastric inhibitory polypeptide (GIP), has been considered a candidate for enterogastrone. GIP is released into the circulation by infusion of fat into the proximal small bowel and inhibits gastric acid secretion under select experimental conditions. It has been proposed that the release of somatostatin, a potent inhibitor of acid secretion, may mediate the gastric inhibitory action of GIP. Recently, monoclonal antibodies raised to both GIP and somatostatin have been produced. The suitability of these antibodies for the study of the physiological roles proposed for their respective peptides is not known.
This study examined the inhibitory action of GIP and somatostatin on gastric acid secretion in the rat and in man. GIP was found to be a weak inhibitor of meal-stimulated gastric acid secretion in man when given in supraphysiological doses. When administered at a dose which produces less than the normal maximal physiological plasma level, GIP had little effect on the acid secretory response to the meal and no effect on either plasma gastrin or plasma SLI concentrations. In the rat, infusion of GIP produced a 60% reduction of meal-stimulated acid secretion, independent of changes in serum gastrin release.
Intraduodenal infusion of oleic acid in the rat reduced the gastric acid secretory response to a liver extract meal by 80% without affecting serum gastrin levels. A humoral gastric inhibitory agent, or "enterogastrone", was demonstrated in the portal blood of the rat following fat infusion. Intravenous infusion of portal serum, which had been collected during an intraduodenal infusion of fat, reduced meal-stimulated acid secretion in a second animal.
A comparison of the inhibition of gastric acid secretion produced by intraduodenal infusion of either glucose or oleic acid with the release of IR-GIP in the portal serum was performed. The inhibitory effect of an intraduodenal fat infusion could not be explained by plasma IR-GIP. The release of GIP was not found to play a significant role in the mechanism for gastric inhibition by intestinal fat.
Part II
Monoclonal antibodies as Probes of Humoral Inhibitors of Gastric acid secretion
The ability of recently produced monoclonal antibodies to block in vivo the inhibitory action of exogenous GIP and somatostatin on gastric acid secretion was examined. Anti-GIP monoclonal antibody demonstrated a high affinity for GIP when compared to the polyclonal rabbit antiserum R07 in the ELISA. When administered either as an intravenous bolus, or after incubation with GIP for 1 hour at 37°C, the antibody was unable to block the inhibitory effect of a GIP infusion on meal-stimulated gastric acid secretion in the rat. Monoclonal antibody 3.65H may not be suitable for the study of the role of endogenously released GIP.
Two anti-somatostatin monoclonal antibody clones 58 and 510, when given as intravenous boluses, blocked the inhibitory action of exogenous somatostatin on meal-stimulated gastric acid secretion in the rat. The antibody clone S10 however, had no effect on the inhibitory action of exogenous GIP on gastric acid secretion. Although both monoclonal antibodies S8 and SIO effectively prevented the gastric inhibitory effect of infused somatostatin, the ability to block the physiological action of endogenously released gastric somatostatin remains to be determined. / Surgery, Department of / Medicine, Faculty of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/24862
Date January 1985
CreatorsMeloche, Robert Mark
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0017 seconds