Avec l’apparition des nouvelles technologies de communication, le nombre des systèmes embarqués avionique et automobile est en constante augmentation. La gestion des communications entre ces systèmes devient alors de plus en plus complexe à mettre en oeuvre dans un contexte où les contraintes temporelles et environnementales sont très fortes et où le taux d’échanges de messages en augmentation continuelle. L’utilisation optimale des réseaux pour acheminer les données tout en respectant les contraintes temporelles imposées est essentielle du point de vue de la sûreté de fonctionnement. Historiquement, pour répondre aux problématiques d’efficacité et de sûreté, les industriels ont développé une palette de réseaux embarqués dédiés à leurs applications cibles (CAN, LIN, . . . ). Ces réseaux présentaient des débits relativement faibles à un moment où un besoin croissant en bande passante se faisait ressentir. le choix d’utiliser le concept de composants dit ‘sur étagères’ (off the shelf COTS) permettait alors de pallier à ce nouveau besoin. Dans un souci de conservation des capacités des réseaux à garantir les contraintes temporelles imposées par les systèmes embarqués temps réel, les industriels ont dû adapter ce concept de composants sur étagères aux systèmes embarqués. L’intérêt de l’utilisation de ces composants est un gain non négligeable en bande passante et en poids pour des coûts de développements relativement faibles. L’introduction de ces composants nouveaux s’est faite de telle sorte que leur impact sur les standards préexistants et les systèmes connectés soit minimal. C’est ainsi que les réseaux dit ‘hétérogènes’ ont vu leur apparition. Ces réseaux constituent une hybridation entre les technologies embarquées historiques et les composants sur étagère. Ils consistent en des réseaux d’extrémité utilisant des technologies éprouvées (telles que le CAN) interconnectés via des passerelles à un réseau fédérateur (backbone) utilisant des composants sur étagères. Dès lors, le défi majeur à relever lors de l’utilisation d’un réseau fédérateur est de respecter les contraintes temporelles des applications sollicitant les différents réseaux. L’objectif est mis à mal sur les points d’interconnexion des réseaux hétérogènes (Passerelles). Ainsi l’approche principale utilisée pour le passage d’un réseau à un autre est l’encapsulation de trames. Pour atteindre l’optimalité de performance de cette technique plusieurs paramètres sont à prendre en compte tels que le nombre de trames à encapsuler, les ordonnancements utilisés, le coût en bande passante ainsi que l’impact sur les distributions de délais (gigue). Dans l’optique de préservation des performances des réseaux, l’objet de nos travaux porte sur l’étude, la comparaison et la proposition de techniques permettant l’interconnexion de réseaux hétérogènes temps réels à la fois pour des applications à faibles et à fortes contraintes temporelles. Après un état de l’art sur les réseaux temps réel, nous spécifions différentes techniques d’interconnexion de réseaux hétérogènes, puis, nous présentons une étude de cas basée sur une architecture réseau interconnectant différents bus CAN via un réseau fédérateur sans fil Wi-Fi. L’étude que nous avons menée montre, par le biais de différentes simulations, que cette architecture réseau est une bonne candidate pour la transmission de flux à contraintes temporelles faibles. Une architecture réseau interconnectant différents bus CAN via un réseau fédérateur Ethernet commuté est ensuite considérée dans une seconde étude de cas ciblant les applications à fortes contraintes temporelles. Dans un premier temps, nous prenons en compte le cas d’un réseau fédérateur Ethernet-PQSE et, dans un second temps, le cas d’Ethernet-AVB. Cette étude nous permet de montrer l’impact des différentes techniques d’interconnexion sur les délais des flux du réseau. / With the emergence of new communication technologies, the number of avionics and automotive embedded systems is constantly increasing. The management of communications between these systems becomes increasingly complex to implement in a context where temporal and environmental constraints are very strong and where messages exchange rate is continuously increasing. The optimal use of networks to transmit data while fulfilling the imposed temporal constraints is essential from a safety point of view. Historically, in order to address safety and efficiency issues, manufacturers have developed a range of embedded networks dedicated to their target applications (CAN, LIN, . . . ). These networks have relatively low bit rates at a point of time where a growing need for bandwidth was felt. To overcome this new need, the choice of using the concept of so-called ’off-theshelf’ components (COTS) has been made. In order to preserve the networks abilities to guarantee the temporal constraints imposed by the real time embedded systems, manufacturers had to adapt the concept of off-the-shelf components to embedded systems. The benefits of using these components is a non-negligible gain in bandwidth and weight for relatively low development costs. The introduction of these new components has been made in such a way that their impact on pre-existing standards and connected systems is minimal. thereby, so-called ’heterogeneous’ networks have emerged. These networks are a hybridization of historical embedded technologies and off-the-shelf components. They consist of stub networks using proven technologies (such as CAN) interconnected via gateways to a backbone network using off-the-shelf components. Thus, the major challenge while using a heterogeneous network is to respect the temporal constraints of the applications requesting the different parts of the networks. This objective can be damaged at the interconnection points of the heterogeneous networks (Gateways). The main used approach to pass frames from one network to another is the encapsulation. To achieve the optimum performances of this technique, several parameters have to be considered such as the number of frames encapsulated, the used scheduling policy, the bandwidth cost as well as the impact on delay distributions (jitter). In order to preserve networks performances, the aim of our work is to study, compare and propose techniques ennabling the interconnection of real-time heterogeneous networks for application with both soft and hard temporal constraints. After a state of the art on real-time networks, we have specified different techniques for the interconnection of heterogeneous networks, then we have presented a case study based on a network architecture interconnecting different CAN buses via a wireless backbone network (Wi-Fi ). The study we conducted shows, through various simulations, that this network architecture is a good contender for the transmission of flows with soft temporal constraints. A network architecture interconnecting different CAN busses via a switched Ethernet backbone is considered in a second case study targeting applications with hard temporal constraints. Two different Ethernet backbone networks are taken into account. We studied first, the case of a switched Ethernet-PQSE backbone network. Then the case of a switched Ethernet-AVB backbone is considered. This study enabled us to highlight the impact of the different used interconnection techniques on network flows delays.
Identifer | oai:union.ndltd.org:theses.fr/2018INPT0026 |
Date | 09 March 2018 |
Creators | Ahmed Nacer, Abdelaziz |
Contributors | Toulouse, INPT, Fraboul, Christian, Scharbarg, Jean-Luc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds