In this thesis we review the gauge/gravity duality and how it can be used to compute the thermodynamic properties and low-energy excitations of holographic quantum liquids - strongly-interacting field theories with a non-zero density of matter. We then study in detail the charge density excitations of two such liquids, the D3/D7 theory and the RN-AdS₄ theory, by computing the poles of their charge density Green's functions, and their charge density spectral functions. Although it is not a Landau Fermi liquid, the charge density excitations of the D3/D7 theory display many of the same properties as one, including a collisionless/hydrodynamic crossover as the temperature is increased. In contrast to this, the charge density (and energy density) excitations of the RN-AdS₄ theory do not share these properties but behave in a way that cannot be explained by Landau's theory of interacting fermionic quasiparticles. This is consistent with other results which indicate that this is not a Landau Fermi liquid.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:580957 |
Date | January 2012 |
Creators | Davison, Richard A. |
Contributors | Starinets, Andrei O. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:3b1db914-709e-41ec-ba7c-c968cb87b752 |
Page generated in 0.0021 seconds