This work aims at a task of speaker diarization. The goal is to implement a system which is able to decide "who spoke when". Particular components of implementation are described. The main parts are feature extraction, voice activity detection, speaker segmentation and clustering and finally also postprocessing. This work also contains results of implemented system on test data including a description of evaluation. The test data comes from the NIST RT Evaluation 2005 - 2007 and the lowest error rate for this dataset is 18.52% DER. Results are compared with diarization system implemented by Marijn Huijbregts from The Netherlands, who worked on the same data in 2009 and reached 12.91% DER.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:236946 |
Date | January 2011 |
Creators | Tomášek, Pavel |
Contributors | Karafiát, Martin, Matějka, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds