The goal of this thesis was to implement a practical tool for optimizing hy- perparameters of neural networks using Bayesian optimization. We show the theoretical foundations of Bayesian optimization, including the necessary math- ematical background for Gaussian Process regression, and some extensions to Bayesian optimization. In order to evaluate the performance of Bayesian op- timization, we performed multiple real-world experiments with different neural network architectures. In our comparison to a random search, Bayesian opti- mization usually obtained a higher objective function value, and achieved lower variance in repeated experiments. Furthermore, in three out of four experi- ments, the hyperparameters discovered by Bayesian optimization outperformed the manually designed ones. We also show how the underlying Gaussian Process regression can be a useful tool for visualizing the effects of each hyperparameter, as well as possible relationships between multiple hyperparameters. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:397644 |
Date | January 2019 |
Creators | Arnold, Jakub |
Contributors | Straka, Milan, Vomlelová, Marta |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds