Stereochemistry plays an important role in nature because biologically important molecules such as amino acids, nucleotides and sugars, only exist in enantiomerically pure forms. Semiochemicals carry messages, between the same species (pheromones) and between different species (allelochemicals). Both pheromones and allelochemicals can be used as environmentally friendly pest management. Many semiochemicals, i.e. behaviour modifying chemicals, consist of pure or well-defined mixtures of stereoisomers, where some of the other stereoisomers can be repellent. It is therefore important to be able to separate them to produce a synthetic pheromone in a mixture that is attractive. Pine sawflies are a family of insects that in some cases can be severe defoliators of conifer trees. Diprion pini, Diprion similis and Neodiprion sertifer are severe pests for these trees and have got the most attention in pine sawfly pheromone studies. The pheromone precursors are stored in the female body as long-chain secondary alcohols, which, when released, are esterified to acetates or propionates. The alcohols are chiral, and normally one of the stereoisomer is the main pheromone component, sometimes possible together with other stereoisomers as essential minor components. Bicyclus is a genus of African butterflies, and especially Bicyclus anynana has become a popular model for the study of life history evolution, morphology, mating choice and genetics. The wing pattern of Bicyclus differs depending on the season, with large eyespots during the rain-season and small or absent spots during the dry season. Euglossa is one of the genera among the orchid bees in the Neotropics that does not produce its own pheromone. Instead, the males collect fragrances from orchids and other sources and store them in a pocket in their hind legs. Both Bicyclus and Euglossa use semiochemicals similar to pine sawflies, and thus can be analysed by the same methods. Pheromones and other semiochemicals in insects are often present in low amounts in a complex matrix, and purification of the sample before chemical analysis is often required. A common method is gradient elution on a solid phase silica column. Separation of stereoisomers can be achieved either by using a column with a chiral stationary phase (CSP) or with pre-column derivatisation using a column with an achiral stationary phase (ASP) or a combination of both, with mass detection as the dominant detection method. The purpose of this work has been to improve the purification method, find suitable methods to separate the stereoisomers of secondary alcohols, and to apply this on extracts of insects. By selecting the right fractions to collect during gradient elution the purification method was optimised. To reduce plasticizer contamination from ordinary columns, solid phase columns of Teflon or glass were used. For pre-column derivatisation of different chiral alcohols various acid chlorides were tested. For the pine sawfly pheromone precursors enantiopure (2S)-2-acetoxypropionyl chloride was the best choice. To separate some of the stereoisomers achiral 2-naphthoyl chloride was used. For derivatisation of 6,10,14-trimethylpentadecan-2-ol (R)-trans-chrysanthemoyl chloride was the best choice. The derivatised alcohols were separated on different columns, both chiral and non-chiral. Varian FactorFour VF-23ms was chosen as a general-purpose column, the Agilent HP-88 column was the best column with an ASP of those tested, and the Chiraldex B-PA column (CSP) was the only one that could separate all eight stereoisomers of derivatised 3,7-dimethylundecan-2-ol, 3,7-dimethyldodecan-2-ol, and 3,7-dimethyltridecan-2-ol. To determine the stereoisomeric purity of standard solutions used in field experiments and extracts of different species of insects the optimised methods were applied. For extracts from B. anynana, Euglossa and Neodiprion lecontei this work describe the first determination of the stereochemistry of some of their semiochemicals. For the determination of the stereochemistry of chiral semiochemicals the methods for purification and separation presented herein have shown to be of great value. The results will hopefully contribute to a better understanding of the communication among insects, and ultimately to a more environmentally friendly pest control. / Många naturligt förekommande kemiska ämnen finns som två spegelbilder av varandra, ungefär som höger och vänster hand. Dessa kan ha helt olika egenskaper och det är därför viktigt att kunna separera dem. Insekter och andra djur använder olika doftämnen för att kommunicera med varandra, om det är inom samma art kallas de för feromoner. De kan bestå av ett ämne eller en blandning av flera. Dessa doftämnen kan man även använda för att på ett miljövänligt sätt bekämpa skadeinsekter. En fälla med syntetiskt feromon för en viss insekt lockar endast till sig den arten, medan alla andra är opåverkade. Eftersom dessa ämnen ofta finns som spegelbilder där kanske bara den ena är aktiv och den andra rent av frånstötande, måste man kunna separera dem för att framställa ett syntetiskt feromon som är attraktivt. Målet med detta arbete har varit att bestämma feromonet hos olika arter av tallsteklar som kan vara svåra skadedjur på tallskog. De metoder som tagits fram har även tillämpats på några arter av afrikanska fjärilar samt orkidébin från Centralamerika eftersom de använder snarlika doftämnen. Att få fram feromonet från en insekt är lite som att leta efter in nål i en höstack eftersom de ofta bara innehåller några miljarddels gram per individ. Provet behöver först renas, och en del av arbetet i det här projektet har gått ut på att ta fram en lämplig reningsmetod. Huvudfokus har dock varit på att ta fram metoder som kan separera och identifiera det eller de ämnen, och spegelbilder av dessa, som doftämnena består av. När lämpliga metoder tagits fram har extrakt av olika insektsarter analyserats. I några fall är det första gången som deras feromon bestämts i detalj. Resultaten kan förhoppningsvis bidra till en ökad kunskap om insekters sätt att kommunicera, och i slutändan till miljövänligare bekämpning av skadeinsekter.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-14662 |
Date | January 2011 |
Creators | Bång, Joakim |
Publisher | Mittuniversitetet, Institutionen för naturvetenskap, teknik och matematik, Sundsvall : Mittuniversitetet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Mid Sweden University doctoral thesis, 1652-893X ; 116 |
Page generated in 0.0029 seconds