Return to search

Money Laundering Detection using Tree Boosting and Graph Learning Algorithms / Detektion av Penningtvätt med hjälp av Trädalgoritmer och Grafinlärningsalgoritmer

In this masters thesis we focused on using machine learning methods for detecting money laundering in financial transaction networks, in order to demonstrate that it can be used as a complement or instead of the more commonly used rule based systems. The graph learning method graph convolutional networks (GCN) has been a hot topic in the field since they were shown to scale well with data size back in 2018. However the typical GCN models cannot use edge features, which is why this thesis combines the GCN model with a node and edge neural network (NENN) in order to solve this problem. This new method will be compared towards an already established machine learning method for financial transactions, namely the tree boosting method (XGBoost). Because of confidentiality concerns for financial transactions data, the machine learning algorithms will be tested on two carefully constructed synthetically generated data sets, which from agent based simulations resembles real financial data. The results showed the viability and superiority of the new implementation of the GCN model with it being a preferable method for connectivly structured data, meaning that a transaction or account is analyzed in the context of its financial environment. On the other hand the XGBoost method showed better results when examining transactions independently. Hence it was more accurately able to find fraudulent and non fraudulent patterns from the transactional features themselves. / I detta examensarbete fokuserar vi på användandet av maskininlärningsmetoder för att detektera penningtvätt i finansiella transaktionsnätverk, med målet att demonstrera att dess kan användas som ett komplement till eller i stället för de mer vanligt använda regelbaserade systemen. Grafinlärningsmetoden \textit{graph convolutional networks} (GCN) som har varit ett hett ämne inom området sedan metoden under 2018 visades fungera bra för stora datamängder. Däremot kan inte en vanlig GCN-modell använda kantinformation, vilket är varför denna avhandling kombinerar GCN-modellen med \textit{node and edge neural networks} (NENN) för att mer effektivt detektera penningtvätt. Denna nya metod kommer att jämföras med en redan etablerad maskininlärningsmetod för finansiella transaktioner, nämligen \textit{tree boosting} (XGBoost). På grund av sekretessanledningar för finansiella transaktionsdata var maskininlärningsalgoritmerna testade på två noggrant konstruerade syntetiskt genererade datamängder som från agentbaserade simuleringar liknar riktiga finansiella data. Resultaten visade på applikationsmöjligheter och överlägsenhet för den nya implementationen av GCN-modellen vilken är att föredra för relationsstrukturerade data, det vill säga när transaktioner och konton analyseras i kontexten av deras finansiella omgivning. Å andra sidan visar XGBoost bättre resultat på att examinera transaktioner individuellt eftersom denna metod mer precist kan identifiera bedrägliga och icke-bedrägliga mönster från de transnationella funktionerna.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-313302
Date January 2021
CreatorsFrumerie, Rickard
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2021:208

Page generated in 0.0021 seconds