My dissertation research focused on studying mechanisms of immunomodulation by probiotic lactobacilli on innate and T cell immune responses induced by rotavirus infection and vaccines in a gnotobiotic pig model of human rotavirus (HRV) infection and vaccination. We first studied the effects of probiotics on antigen-presenting cells (APCs) through TLR activation. We found that a mixture of Lactobacilli acidophilus strain NCFM (LA) and L. reuteri (ATCC# 23272) induced strong TLR2-expressing APC responses and virulent HRV induced a TLR3 response. Probiotics and HRV had an additive effect on TLR2- and TLR9-expressing APC responses, consistent with the adjuvant effect of lactobacilli.
Dose effects of LA on T cell immune responses were investigated. We found that low dose LA significantly enhanced frequencies of HRV-specific IFN-γ producing CD4⁺ and CD8+ T cells whereas high dose LA reduced frequencies of HRV-specific IFN-γ producing CD4+ T cells. Low dose LA reduced frequencies of induced regulatory (iTreg) cells and TGF-β expression in the iTreg cells whereas high dose LA increased frequencies of iTreg cells and IL-10 expression in the iTreg cells. The dose effects of LA were independent of HRV infection/vaccination.
In addition, we demonstrated that TCR-γδ T cells play an important role in modulating immune responses to rotavirus infections. All three γδ T cell subsets showed evidence of activation after HRV infection by increasing TLR2, TLR3, TLR9 expression and IFN-γ production during the acute phase of infection. There was an additive effect between lactobacilli and HRV in inducing total γδ T cell expansion in ileum and in recruiting the cells from blood. HRV infection induced a significant expansion of the CD2+CD8+ γδ T cell subset in the ileum. This subset mainly exerts regulatory functions as evident by expressing FoxP3, secreting TGF-β and IL-10 or increasing production of the anti-inflammatory cytokines by CD4+ and/or CD8+ αβ T cells in the co-cultures. CD2+CD8- and CD2-CD8- γδ T cell subsets have mainly pro-inflammatory and anti-viral functions as evident by secreting IFN-γ or promoting CD4+ αβ T cell proliferation and IFN-γ production.
This knowledge will facilitate the development of more effective vaccination and therapeutic strategies to protect children and young animals against rotavirus gastroenteritis. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/77243 |
Date | 23 November 2011 |
Creators | Wen, Ke |
Contributors | Veterinary Medical Sciences, Yuan, Lijuan, Meng, Xiang-Jin, Ponder, Monica A., Subbiah, Elankumaran |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Dissertation, Text |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0028 seconds