We forecast US GDP sampled quarterly over horizons ranging from one quarter to three years. Using AR-MIDAS models we study three lag polynomials: the Almon lag, the exponential Almon lag and the beta lag, and nine macroeconomic variables, sampled weekly or monthly. Our benchmark model is an AR(1) and we compare forecast errors using RMSE. In all instances the AR-MIDAS achieves lower forecast errors compared to the benchmark model. The predictor sampled weekly generally performs better compared to other predictors, which are sampled monthly.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-242554 |
Date | January 2015 |
Creators | Lindgren, Hanna, Nilsson, Victor |
Publisher | Uppsala universitet, Statistiska institutionen, Uppsala universitet, Statistiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds