A graph dynamical system (GDS) is a theoretical construct that can be used to simulate and analyze the dynamics of a wide spectrum of real world processes which can be modeled as networked systems. One of our goals is to compute the phase space of a system, and for this, even 30-vertex graphs present a computational challenge. This is because the number of state transitions needed to compute the phase space is exponential in the number of graph vertices. These problems thus produce memory and execution speed challenges. To address this, we devise various MapReduce programming paradigms that can be used to characterize system state transitions, compute phase spaces, functional equivalence classes, dynamic equivalence classes and cycle equivalence classes of dynamical systems. We also evaluate these paradigms and analyze their suitability for modeling different GDSs. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/54546 |
Date | 09 July 2015 |
Creators | Hamid, Tania |
Contributors | Computer Science, Marathe, Madhav Vishnu, Kuhlman, Christopher James, Ribbens, Calvin J., Vullikanti, Anil Kumar S. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0028 seconds