Bacteria's ability to pass entire genes between one another, a process called Horizontal Gene Transfer (HGT), has a major impact on bacterial evolution. In an ongoing project at Harvey Mudd, computational methods have been used to catalogue the HGT events that have impacted a group of closely related bacteria.
This thesis builds on that project, by improving our ability to identify gene families --- groups of genes in different strains that are related. Previously, similarity was measured only by comparing two genes' DNA sequences, ignoring their positions on the organism's DNA. Here, we leverage genes' relative position to make a better measurement of gene similarity. These improved similarity measurements will improve the existing pipeline's ability to identify HGT events.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1087 |
Date | 01 January 2016 |
Creators | Wilber, Matthew |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | 2016 Matthew K Wilber, default |
Page generated in 0.0023 seconds