On étudie dans cette thèse la régularité des cônes et d'ensembles de dimension 3 dans l'espace Euclidien de dimension 4.Dans la première partie, on étudie d'abord la régularité Bi-Hölderienne des cônes minimaux de dimension 3 dans l'espace Euclidien de dimension 4. Ceci nous permet ensuite de montrer qu'il existe un difféomorphisme locale entre un cône minimal de dimension 3 dans l'espace Euclidien de dimension 4 et un cône minimal de dimension 3, de type P, Y ou T, loin d'origine. La méthode est la même que pour les ensembles minimaux de dimension 2. On construit des compétiteurs et on se ramène aux situations connues des ensembles minimaux de dimension 2 dans l'espace Euclidien de dimension 3.Dans la deuxième partie, on utilise le résultat de la première partie pour donner quelques résultats de régularité Bi-Hölderienne pour les ensembles minimaux de dimension 3 dans l'espace Euclidien de dimension 4. On s'intéresse aussi aux ensembles minimaux de Mumford-Shah et on obtient un résultat de l'existence d'un point de type T.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00665664 |
Date | 12 December 2011 |
Creators | Luu, Tien Duc |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0014 seconds