For the case where L is an ecl-premonoid, we explore various characterizations of SL-topological spaces, in particular characterization in terms of a convergence function lim: FS L(X) ! LX. We find we have to introduce a new axiom , L on the lim function in order to completely describe SL-topological spaces, which is not required in the case where L is a frame. We generalize the classical Kowalski and Fischer axioms to the lattice context and examine their relationship to the convergence axioms. We define the category of stratified L-generalized convergence spaces, as a generalization of the classical convergence spaces and investigate conditions under which it contains the category of stratified L-topological spaces as a reflective subcategory. We investigate some subcategories of the category of stratified L-generalized convergence spaces obtained by generalizing various classical convergence axioms.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:5402 |
Date | January 2011 |
Creators | Orpen, David Lisle |
Publisher | Rhodes University, Faculty of Science, Mathematics |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MSc |
Format | 129 p., pdf |
Rights | Orpen, David Lisle |
Page generated in 0.0018 seconds