Return to search

Anonymizing Faces without Destroying Information

Anonymization is a broad term. Meaning that personal data, or rather data that identifies a person, is redacted or obscured. In the context of video and image data, the most palpable information is the face. Faces barely change compared to other aspect of a person, such as cloths, and we as people already have a strong sense of recognizing faces. Computers are also adroit at recognizing faces, with facial recognition models being exceptionally powerful at identifying and comparing faces. Therefore it is generally considered important to obscure the faces in video and image when aiming for keeping it anonymized. Traditionally this is simply done through blurring or masking. But this de- stroys useful information such as eye gaze, pose, expression and the fact that it is a face. This is an especial issue, as today our society is data-driven in many aspects. One obvious such aspect is autonomous driving and driver monitoring, where necessary algorithms such as object-detectors rely on deep learning to function. Due to the data hunger of deep learning in conjunction with society’s call for privacy and integrity through regulations such as the General Data Protection Regularization (GDPR), anonymization that preserve useful information becomes important. This Thesis investigates the potential and possible limitation of anonymizing faces without destroying the aforementioned useful information. The base approach to achieve this is through face swapping and face manipulation, where the current research focus on changing the face (or identity) while keeping the original attribute information. All while being incorporated and consistent in an image and/or video. Specifically, will this Thesis demonstrate how target-oriented and subject-agnostic face swapping methodologies can be utilized for realistic anonymization that preserves attributes. Thru this, this Thesis points out several approaches that is: 1) controllable, meaning the proposed models do not naively changes the identity. Meaning that what kind of change of identity and magnitude is adjustable, thus also tunable to guarantee anonymization. 2) subject-agnostic, meaning that the models can handle any identity. 3) fast, meaning that the models is able to run efficiently. Thus having the potential of running in real-time. The end product consist of an anonymizer that achieved state-of-the-art performance on identity transfer, pose retention and expression retention while providing a realism. Apart of identity manipulation, the Thesis demonstrate potential security issues. Specifically reconstruction attacks, where a bad-actor model learns convolutional traces/patterns in the anonymized images in such a way that it is able to completely reconstruct the original identity. The bad-actor networks is able to do this with simple black-box access of the anonymization model by constructing a pair-wise dataset of unanonymized and anonymized faces. To alleviate this issue, different defense measures that disrupts the traces in the anonymized image was investigated. The main take away from this, is that naively using what qualitatively looks convincing of hiding an identity is not necessary the case at all. Making robust quantitative evaluations important.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-52892
Date January 2024
CreatorsRosberg, Felix
PublisherHögskolan i Halmstad, Akademin för informationsteknologi, Engage Studios, Gothenburg, Sweden, Halmstad
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationHalmstad University Dissertations ; 111

Page generated in 0.0017 seconds