Return to search

Using Genetic Code Expansion and Rational Disulfide Bond Design to Engineer Improved Activity and (Thermo)Stability of Rhodococcus opacus Catechol 1,2-Dioxygenase

Catechol 1,2-Dioxygenase from Rhodococcus opacus is a type of intradiol dioxygenase enzyme that catalyzes the conversion of catechol to cis, cis muconic acid. This enzymatic conversion has the potential to be useful in a number of different applications such as treating wastewater contaminated with aromatic compounds to creating a greener method to produce cis, cis muconic acid which can be used to make a number of industrially important base chemicals. However, for enzymes to be used in industrial conditions, they must be highly stable. The experimental chapters in this thesis explore whether this enzyme can be stabilized to meet industrial requirements while minimizing any loss in catalytic activity. Through the studies
described in Chapter 2, a mutant enzyme was generated through disulfide bond engineering with significantly improved thermostability. However overall catalytic activity was reduced. Toward addressing this loss of catalytic activity, in Chapter 3, attempts were made to implement state-of-the-art genetic code expansion strategies to increase catalytic activity of the enzymes. However, these attempts were unsuccessful. Finally, Chapter 4 describes how future stability engineering could be optimized using design pipelines similar to the one developed in this study. Additionally, it describes possible additional optimizations toward making the application of these enzymes cost effective in the near future.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/45881
Date23 January 2024
CreatorsLister, Joshua
ContributorsLoewen, Michele
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0022 seconds