We demonstrate the success of recurrent neural networks in gene network inference and expression prediction using a hybrid of particle swarm optimization and differential evolution to overcome the classic obstacle of local minima in training recurrent neural networks. We also provide an improved validation framework for the evaluation of genetic network modeling systems that will result in better generalization and long-term prediction capability. Success in the modeling of gene regulation and prediction of gene expression will lead to more rapid discovery and development of therapeutic medicine, earlier diagnosis and treatment of adverse conditions, and vast advancements in life science research.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-3647 |
Date | 10 December 2010 |
Creators | Chan, Heather Y. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.002 seconds