Return to search

Genotoxic responses at low doses for chemicals requiring metabolic activation using different human cell lines

ro-carcinogens e.g. B[a]P and PhIP require metabolic activation to exert genotoxicity. Both B[a]P and PhIP are known to cause different types of cancers, however, very little is known about the dose response of these two chemicals at low concentrations. This study was conducted to determine the effect of low doses of B[a]P and PhIP and their exposure time on cell lines with varying levels of metabolic activity. Micronucleus and HPRT assays were conducted to determine the effect of low doses of B[a]P on micronuclei induction and mutation frequency following 4 or 24 h exposure. MCL-5 and HepG2 cell lines showed higher induction of micronuclei irrespective of B[a]P dose and exposure time. Micronuclei induction was least in AHH-1 while TK-6 cells showed no micronuclei induction. HPRT assay also showed higher mutation frequency in MCL-5 as compared to AHH-1 at both time exposures. Analysis of mutation spectra of MCL-5 and AHH-1 HPRT mutants revealed that the type of mutations observed in B[a]P treated cells were different to those observed in untreated control B[a]P-induced mutations were predominantly G → T transversions. Real time PCR assays revealed higher induction of CYP1A1 and CY1A2 enzymes in response to B[a]P in MCL-5 and HepG2 cell lines. Studies on PhIP showed significantly higher cytotoxicity, genotoxicity and mutation frequency in the MCL-5 and HepG2 cell lines than AHH-1 cells. Micronucleus assays (24h) revealed 1.56 and 1.9-.fold increase in micronuclei induction in MCL-5 and HepG2, respectively as compared to control. A similar trend was observed in 4h PhIP exposure study, where MCL-5 and HepG2 had 1.83 and 1.92-.fold increase respectively. These findings are in line with the metabolic potential of the cell lines. Real-time PCR assays showed that over all, expression of CYP1A1 and CY1A2 was higher in HepG2 than MCL-5 following PhIP exposure for 24h. PhIP was observed to induce a significantly higher mutation frequency in MCL-5 cell lines than untreated control. Mutation type also varied among PhIP treated and untreated control of MCL-5. PhIP treated MCL-5 cells showed predominantly G → T transversions. These studies showed that cells with higher metabolic activity are relatively more capable of activating B[a]P and PhIP and therefore show higher genotoxicity in response to dose and exposure of these pro-carcinogens. Considering the results of this study, potential risk of B[a]P and PhIP induced cancers has been discussed.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:678616
Date January 2014
CreatorsShah, Ume-Kulsoom
PublisherSwansea University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://cronfa.swan.ac.uk/Record/cronfa43055

Page generated in 0.002 seconds