Return to search

Investigation into the relationship between PARPs in DNA repair and synthetic lethality with homologous recombination deficiency

The genome of each cell is under constant threat from various forms of DNA damage. In order to protect themselves from this danger, cells possess a number of pathways able to resolve DNA lesions. The addition of poly(ADPribose) is a post-translational modification produced by attaching successive ADP-ribose moieties to a protein acceptor, forming long chains. Enzymes called poly(ADP-ribose) polymerases (PARPs) catalyse the production of these modifications, and a number of different PARPs have been linked to the process of DNA repair, including PARP1, PARP2 and PARP3. How these enzymes might function together to facilitate the repair of different lesions is unclear. Furthermore, inhibitors that target these enzymes are in clinical use for their ability to kill homologous recombination deficient tumour cells, through a mechanism of synthetic lethality. Which subset of PARPs is necessary to inhibit to achieve maximum efficacy of these agents has not been assessed. I use genome editing to generate cells disrupted for these PARPs in different combinations. Whilst loss of PARP1 compromises cellular tolerance to homologous recombination deficiency, this is independent of the status of PARP2 and PARP3, indicating the development of PARP1-specific inhibitors may hold therapeutic potential. In contrast to these observations, I uncover strong redundancy between PARP1 and PARP2 in the repair of damaged DNA bases through the base excision repair (BER) pathway. I also identify BER independent roles of both PARP1 and PARP2 in resolving replication forks that have collided with BER-intermediates, through promoting the stability of Rad51 nucleofilaments via an Fbh1-dependent mechanism. Thus PARP1 and PARP2 perform two closely-linked functions in response to cellular base damage promoting resolution of these lesions directly through BER, and stabilising replication forks which have encountered BER intermediates.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:740845
Date January 2017
CreatorsRonson, George
ContributorsLakin, Nick
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://ora.ox.ac.uk/objects/uuid:29e88ce0-a284-4537-983b-18ba364d4b3a

Page generated in 0.0021 seconds