Return to search

Whole genome approaches for characterizing and utilizing synthetic wheat

Doctor of Philosophy / Genetics - Plant Pathology / Jesse A. Poland / The global population is estimated to reach 9.1 billion by 2050. Together with climate change, insuring food security for this population presents a significant challenge to agriculture. In this context, a large number of breeding objectives must be targeted. The focus of the work presented here is to explore genomic approaches for tapping exotic germplasm for valuable alleles to increased yield, disease resistance and abiotic stress tolerance.
The loss of genetic diversity in bread wheat (Triticum aestivum L.) due to bottlenecks during polyploidization, domestication and modern plant breeding can be compensated by introgressing novel exotic germplasm. Here, the potential of genomic selection (GS) for rapid introgression of synthetic derived wheat is evaluated in field trials. Overall, the GS models had moderate predictive ability. However, prediction accuracies were lower than expected likely due to complex and confounding physiological effects. As such, implementation of rapid cycle GS for introgression of exotic alleles is possible but might not perform very well with synthetic derived wheat.
Disease resistance is another important trait affecting grain yield. Stem rust (Puccinia graminis f. sp. tritici) has historically caused severe yield loss of wheat worldwide. In a quantitative trait loci (QTL) mapping study with a synthetic-derived mapping population, QTLs for resistance to stem rust races TRTTF and QTHJC were identified on chromosomes 1AS, 2BS, 6AS and 6AL. Some of these genes could be new resistance genes and useful for marker-assisted selection (MAS).
In addition to food insecurity through lack of sufficient source of calories, nutrient deficiency is considered the ‘hidden hunger’ and can lead to serious disorders in humans. Through biofortification, essential nutrients are increased in staple crops for improved quality of
food and human health. A high-throughput elemental profiling experiment was performed with the same synthetic derived mapping population to study the wheat ionome. Twenty-seven QTL for different elements in wheat shoots and two QTL in roots were identified. Four “hotspots” for nutrient accumulation in the shoots were located on chromosomes 5AL, 5BL, 6DL and 7AL.
Overall, exotic germplasm is a valuable source of favorable alleles, but improved breeding methodologies are needed to rapidly utilize this diversity.

Identiferoai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/20518
Date January 1900
CreatorsDunckel, Sandra Margarita
PublisherKansas State University
Source SetsK-State Research Exchange
Languageen_US
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0023 seconds