Return to search

Development Of A Sandwich-type Dna Array Platform For The Detection Of Label-free Oligonucleotide Targets

DNA arrays have become a major bioanalytical method as they enable high-throughput screening and they can be manufactured on different surfaces depending on the nature of diagnostic purpose. However, current technologies to produce and detect arrays of DNA probes are expensive due to the requirement of specialized instrumentation. In this study we have established an array platform in sandwich hybridization format for the detection of label-free nucleic acid targets.

Unlike direct hybridization, which is the main microarray hybridization principle, sandwich assay enables unlabeled target detection, lowering the cost and assay time. To this end, sequence specific signal development was achieved by a sandwich complex which is composed of a surface immobilized capture DNA probe (Probe1) and a fluorescein-tagged signal DNA probe (Probe 2), which are partially complementary to the sequence to be analyzed (target oligonucleotide).

As the solid support of the array platform both 3-aminopropyl-3-methoxysilane (APTMS) activated and commercially purchased poly-L lysine coated glass slides were used and due to the less background noise property the latter one was preferred.
Similarly, for the immobilization of the capture Probe (P1) onto the solid support two different methods were tried / heat immobilization and immobilization via a heterobifunctional cross-linker (HBCL). In regard to the experiments, it is observed that using a cross-linker instead of heat immobilization reduces the ratio of false negative control results in a significant manner.

Following the solid support and immobilization method choice comparative optimization studies which include cross-linker type, probe concentration, sensitivity of the platform and hybridization conditions (sequence, temperature and duration) were conducted. Optimum hybridization signal was obtained with a 32.5

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612658/index.pdf
Date01 October 2010
CreatorsCansiz, Sena
ContributorsOktem, Huseyin Avni
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.006 seconds