Human appearance is highly variable and depends on individual preferences, such as fashion, facial expression, and makeup. These preferences depend on many factors including a person's sense of style, what they are doing, and the weather. These factors, in turn, are dependent upon geographic location and time. In our work, we build computational models to learn the relationship between human appearance, geographic location, and time. The primary contributions are a framework for collecting and processing geotagged imagery of people, a large dataset collected by our framework, and several generative and discriminative models that use our dataset to learn the relationship between human appearance, location, and time. Additionally, we build interactive maps that allow for inspection and demonstration of what our models have learned.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:cs_etds-1080 |
Date | 01 January 2018 |
Creators | Bessinger, Zachary |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Computer Science |
Page generated in 0.0019 seconds