The objectives of this research were to provide accurate geotomography data and to subsequently use these data to investigate the ability of a two dimensional (2-D), rigorous wave equation model to describe the data. This was approached by constructing a physical, scale model EM tomography system to make measurements over a known, controllable medium. These data were used in the evaluation of a 2-D, exact, integral wave equation model as part of a reconstruction algorithm to image the conductivity and permittivity distribution of the planar region under investigation. Measured data exhibited precision, symmetry and repeatability, and also accuracy in determining the conductivity and permittivity of an aqueous solution. Analysis of the data indicates that the tomography system can detect and accurately locate a target. Adjustments in the 2-D mathematical model were needed in order to accurately fit the radiation pattern of the electric dipole antenna used in the physical scale model. Subsequently, the 2-D model was able to successfully describe tomography data over a 2-D target.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/278551 |
Date | January 1996 |
Creators | Mallan, Robert Keays, 1968- |
Contributors | Sternberg, Ben K., Glass, Charles E. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0021 seconds