The deformability and strength properties of jointed rock masses are two of the fundamental parameters needed for the design and performance estimation of rock structures. Due to the presence of complicated minor discontinuity patterns (joints, bedding planes etc.), jointed rock masses show anisotropic and scale (size) dependent mechanical properties. At present, satisfactory procedures are not available to estimate anisotropic, scale dependent mechanical properties of jointed rock. Because of the statistical nature of joint geometry networks in rock masses, the joint patterns should be characterized statistically. The available joint geometry modeling schemes are reviewed. One of these schemes is used in this dissertation to generate actual joints in rock blocks. Three dimensional distinct element code (3DEC), which is used to perform stress analyses on jointed rock blocks in this study, is introduced and its shortcoming is identified. To overcome the shortcoming of 3DEC, a new technique is developed by introducing fictitious joints into rock blocks. Concerning the introduced fictitious joints, their geometry positions are mathematically determined; the representative mechanical properties for them found at 2D level are reviewed and verified at 3D level. By using the new technique, the deformation and strength properties of the rock blocks with many different joint configurations are found. Then effects of joint geometry parameters on the mechanical properties of jointed rock blocks are investigated. It is found that the joint geometry patterns have significant influences on the mechanical properties of rock blocks. All the joint geometry parameters are then integrated into fracture tensor. The relationships between the mechanical properties of jointed rock blocks and the fracture tensor parameters (its first invariant and directional component) are investigated. The possibility of obtaining the equivalent continuum behavior (REV properties) of jointed rock blocks is explored by using the aforementioned relationships. Finally, based on the research results, a new 3D constitutive model for jointed rock masses is developed to describe their pre-failure behavior. The constitutive model includes the effects of joints in terms of fracture tensor components and it shows the anisotropic and scale dependent natures of jointed rock masses.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/185923 |
Date | January 1992 |
Creators | Wang, Shuxin. |
Contributors | Kulatilake, Pinnaduwa H.S.W., Kemeny, John M., Glass, Charles E., Contractor, Dinshaw N. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0088 seconds