Return to search

Control of complex structural geometry in optical fibre drawing

Drawing of standard telecommunication-type optical fibres has been optimised in terms of optical and physical properties. Specialty fibres, however, typically have more complex dopant profiles. Designs with high dopant concentrations and multidoping are common, making control of the fabrication process particularly important. In photonic crystal fibres (PCF) the inclusion of air-structures imposes a new challenge for the drawing process. The aim of this study is to gain profound insight into the behaviour of complex optical fibre structures during the final fabrication step, fibre drawing. Two types of optical fibre, namely conventional silica fibres and PCFs, were studied. Germanium and fluorine diffusion during drawing was studied experimentally and a numerical analysis was performed of the effects of drawing parameters on diffusion. An experimental study of geometry control of PCFs during drawing was conducted with emphasis given to the control of hole size. The effects of the various drawing parameters and their suitability for controlling the air-structure was studied. The effect of air-structures on heat transfer in PCFs was studied using computational fluid dynamics techniques. Both germanium and fluorine were found to diffuse at high temperature and low draw speed. A diffusion coefficent for germanium was determined and simulations showed that most diffusion occurred in the neck-down region. Draw temperature and preform feed rate had a comparable effect on diffusion. The hole size in PCFs was shown to depend on the draw temperature, preform feed rate and the preform internal pressure. Pressure was shown to be the most promising parameter for on-line control of the hole size. Heat transfer simulations showed that the air-structure had a significant effect on the temperature profile of the structure. It was also shown that the preform heating time was either increased or reduced compared to a solid structure and depended on the air-fraction.

  1. http://hdl.handle.net/2123/597
Identiferoai:union.ndltd.org:ADTP/283023
Date January 2004
CreatorsLyytik�inen, Katja Johanna
PublisherUniversity of Sydney. School of Physics and the Optical Fibre Technology Centre
Source SetsAustraliasian Digital Theses Program
LanguageEnglish, en_AU
Detected LanguageEnglish
RightsCopyright Lyytik�inen, Katja Johanna;http://www.library.usyd.edu.au/copyright.html

Page generated in 0.0019 seconds