Return to search

Quantifying the effects of temperature on dormancy change and germination in orchardgrass (<i>Dactylis glomerata</i> L.) and western wheatgrass (<i>Pascopyrum smithii</i> [Rydb.] L.)

Orchardgrass (<i>Dactylis glomerata</i> L.) and western wheatgrass (<i>Pascopyrum smithii </i>(Rydb.) L.) seeds have different degrees of dormancy that result in non-uniform seedling emergence in the field. Seed dormancy of the two species, in part, causes disagreement between germination tests in the laboratory and seedling emergence in the field. Experiments were conducted over two years in the laboratory and in the field to determine the effects of alternating temperatures on changes in seed dormancy and germination of orchardgrass and western wheatgrass. The two western wheatgrass cultivars (Walsh and LC9078a) had deeper dormancy than the two orchardgrass cultivars (Arctic and Lineta). Dormancy of both species was broken by temperatures with 10oC amplitude; this temperature variation was similar to that which occurred at a 1 cm depth in the soil. Optimal temperatures for germination of orchardgrass (10-25oC) were broader than those for western wheatgrass (15-20oC). Seedling emergence of orchardgrass was less sensitive to seeding date in the spring than western wheatgrass; seedling emergence of western wheatgrass increased as seeding date was delayed from early to late May if soil water was not limiting. The rate of seedling emergence increased with increasing temperature in both species, therefore, faster and more uniform seedling emergence can be expected from late spring seeding dates. Seeds were often exposed to light during germination tests in the laboratory while planting seeds in the soil usually prevented exposure of seeds to light. Seedling emergence of orchardgrass in the field was usually less than the germination percentage obtained in the laboratory because of light exposure during germination tests could break dormancy in orchardgrass seeds and the small seeds of orchardgrass had limited energy reserves for pre-emergence seedling growth. On the other hand, germination of western wheatgrass seeds was reduced by exposure to light during germination and seeds were larger than those of orchardgrass. Therefore, seedling emergence of western wheatgrass in the field was usually greater than germination tests would predict. The use of thermal time models to study seed dormancy changes and germination revealed the dual effects of temperature on these processes. The modified thermal time model takes the difference between germination and seedling emergence into account and can accurately predict seedling emergence in the field (R2=0.88 to 0.99). Thermal time models for predicting seedling emergence in the field can also be developed for other forages, however, cultivar- and species-specific parameters must be developed for the models.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-06132005-151355
Date14 June 2005
CreatorsQiu, Jie
ContributorsTanino, Karen, Romo, James T., Jefferson, P., Hughes, Geoffrey R., Coulman, Bruce E., Bai, Yuguang
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-06132005-151355/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0068 seconds