Les grassmanniennes symplectiques impaires sont une famille d'espaces quasi-homogènes très proches des grassmanniennes symplectiques de par leur construction et leurs propriétés. Dans ce travail, j'étudie leur cohomologie classique et quantique. Pour les grassmanniennes symplectiques impaires de droites, j'obtiens une règle de Pieri quantique ainsi qu'une présentation de l'anneau de cohomologie quantique. J'en déduis la semi-simplicité de cet anneau et je détermine une collection exceptionnelle complète pour la catégorie dérivée, ce qui me permet de vérifier pour cet exemple une conjecture de Dubrovin. Dans le cas général, je démontre un principe quantique-classique pour certains invariants de Gromov-Witten de degré un. Sous réserve de l'énumérativité des invariants de degré supérieur, je prouve que la règle de Pieri quantique est entièrement déterminée par le calcul des invariants de degré un.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00650211 |
Date | 06 December 2011 |
Creators | Pech, Clelia |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds