La Neuropathie à Axones Géants (NAG) est une maladie neurodégénérative rare et fatale caractérisée par une détérioration du système nerveux central et périphérique, impliquant les fonctions motrices et sensorielles. La détérioration massive du système nerveux est accompagnée d'une désorganisation générale des Filaments Intermédiaires ce qui la différencie de nombreuses maladies neurodégénératives où seuls les neurofilaments(NFs) sont affectés. La protéine déficiente, la gigaxonine, est la sous-unité d'une ubiquitine ligase E3, responsable de la reconnaissance spécifique des substrats MAP1B, MAP1S et TBCB, seuls connus à ce jour.Dans le but d'étudier le rôle de la gigaxonine sur la survie neuronale, la désorganisation du cytosquelette et d'avoir un modèle animal suffisamment fort pour envisager des tests thérapeutiques, j'ai caractérisé un modèle murin de NAG. Pour ce faire, j'ai réalisé une étude comportementale des fonctions motrices et sensorielles ainsi qu'une étude histopathologique. Les souris NAG (129/SvJ) développent un phénotype moteur modéré dès 60 semaines alors que les souris NAG (C57BL/6) présentent un phénotype sensoriel dès 60 semaines. Les données histopathologiques ne présentent pas de mort neuronale mais les NFs sont sévèrement altérés. Les NFs sont plus abondant, leur diamètre est augmenté et leur orientation hétérogène, comme c'est observé chez les patients NAG.Nos résultats montrent que l'absence de gigaxonine induit un phénotype moteur et sensoriel modéré mais par contre reproduit la désorganisation massive des NFs observée chez les patients. Ce modèle va nous permettred'étudier le rôle de la gigaxonine, une ligase E3, sur l'organisation des NFs et ainsi comprendre les processus pathologiques impliqués dans d'autres maladies neurodégénératives caractérisée par une accumulation des NFs et un dysfonctionnement du système ubiquitine-protéasome comme les maladies d'Azheimer, de Parkinson etd'huntington ou la sclérose latérale amyotrophique. / Giant Axonal Neuropathy (GAN) is a rare and fatale neurodegenerative disorder characterized by a deterioration of the peripheral and central nervous system. The broad deterioration of the nervous system is accompanied with a general disorganization of the Intermediate Filaments which makes it different from other neurodegenerative disorders wherein only neurofilaments (NFs) are affected. The defective protein, gigaxonin, is the substrate adaptator of an E3 ubiquitin ligase, in charge of the specific recognition of MAP1B, MAP1S and TBCB. In order to study the role of gigaxonin on neuronal survival, the cytoskeleton disorganization and to have a relevant GAN animal model to evaluate efficacy of GAN treatments, I have characterized a GAN mouse model. I did a motor and sensory behavioural study and an histopathologic study. The GAN mice (129/SvJ) shown mild motordeficits starting at 60 weeks of age while sensory deficits were evidenced in C57BL/6 GAN mice. No apparent neurodegeneration was evidenced in GAN mice, but dysregulation of NFs was massive. NFs were more abundant, they shown the abnormal increased diameter and misorientation that are characteristics of the human pathology. Our results show that gigaxonin depletion induces mild motor and sensory deficits but recapitulates the severe NFs dysregulation seen in patients. Our model will allow us to study the role of the gigaxonin-E3 ligase in organizing NFs and understand the pathological processes engaged in other neurodegenerative disorders characterized by accumulation of NFs and dysfunction of the Ubiquitin Proteasome System, such as Amyotrophic Lateral Sclerosis, Huntington's, Alzheimer's and Parkinson's diseases.
Identifer | oai:union.ndltd.org:theses.fr/2011AIX22075 |
Date | 30 September 2011 |
Creators | Ganay, Thibault |
Contributors | Aix-Marseille 2, Bomont, Pascale |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds