Return to search

Computational Optical Imaging Systems for Spectroscopy and Wide Field-of-View Gigapixel Photography

<p>This dissertation explores computational optical imaging methods to circumvent the physical limitations of classical sensing. An ideal imaging system would maximize resolution in time, spectral bandwidth, three-dimensional object space, and polarization. Practically, increasing any one parameter will correspondingly decrease the others.</p><p>Spectrometers strive to measure the power spectral density of the object scene. Traditional pushbroom spectral imagers acquire high resolution spectral and spatial resolution at the expense of acquisition time. Multiplexed spectral imagers acquire spectral and spatial information at each instant of time. Using a coded aperture and dispersive element, the coded aperture snapshot spectral imagers (CASSI) here described leverage correlations between voxels in the spatial-spectral data cube to compressively sample the power spectral density with minimal loss in spatial-spectral resolution while maintaining high temporal resolution.</p><p>Photography is limited by similar physical constraints. Low f/# systems are required for high spatial resolution to circumvent diffraction limits and allow for more photon transfer to the film plain, but require larger optical volumes and more optical elements. Wide field systems similarly suffer from increasing complexity and optical volume. Incorporating a multi-scale optical system, the f/#, resolving power, optical volume and wide field of view become much less coupled. This system uses a single objective lens that images onto a curved spherical focal plane which is relayed by small micro-optics to discrete focal planes. Using this design methodology allows for gigapixel designs at low f/# that are only a few pounds and smaller than a one-foot hemisphere.</p><p>Computational imaging systems add the necessary step of forward modeling and calibration. Since the mapping from object space to image space is no longer directly readable, post-processing is required to display the required data. The CASSI system uses an undersampled measurement matrix that requires inversion while the multi-scale camera requires image stitching and compositing methods for billions of pixels in the image. Calibration methods and a testbed are demonstrated that were developed specifically for these computational imaging systems.</p> / Dissertation

Identiferoai:union.ndltd.org:DUKE/oai:dukespace.lib.duke.edu:10161/7145
Date January 2013
CreatorsKittle, David S.
ContributorsBrady, David J
Source SetsDuke University
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0028 seconds