Return to search

Applications of CryoSat-2 swath radar altimetry over Icelandic ice caps and Patagonian ice fields

Satellite altimetry has been traditionally used in the past few decades to measure elevation of land ice, quantify changes in ice topography and infer the mass balance of large and remote areas such as the Greenland and Antarctic ice sheets. Radar altimetry is particularly well suited to this task due to its all-weather year-round capability of observing the ice surface. However, monitoring of ice caps and ice fields - bodies of ice with areas typically smaller than ~ 10,000 km2 - has proven more challenging. The large footprint of a conventional radar altimeter and coarse ground track coverage are less suited to observing comparatively small regions with complex topography. Since 2010, the European Space Agency’s CryoSat-2 satellite has been collecting ice elevation measurements over ice caps and ice fields with its novel radar altimeter. CryoSat-2’s smaller inter-track spacing provides higher density of observations compared to previous satellite altimeters. Additionally, it generates more accurate measurements because (i) the footprint size is reduced in the along-track direction by means of synthetic aperture radar processing and (ii) interferometry allows to precisely locate the the across-track angle of arrival of a reflection from the surface. Furthermore, the interferometric capabilities of CryoSat-2 allow for the processing of the delayed surface reflections after the first echo. When applied over a sloping surface, this procedure generates a swath of elevations a few km wide compared to the conventional approach returning a single elevation. In this thesis, swath processing of CryoSat-2 interferometric data is exploited to generate topographic data over ice caps and ice fields. The dense elevation field is then used to compute maps of elevation change rates at sub-kilometer resolution with the aim of quantifying ice volume change and mass balance. A number of algorithms have been developed in this work, partly or entirely, to form a complete processing chain from generating the elevation field to calculating volume and mass change. These algorithms are discussed in detail before presenting the results obtained in two selected regions: Iceland and Patagonia. Over Icelandic ice caps, the high-resolution mapping reveals complex surface elevation changes, related to climate, ice dynamics and sub-glacial, geothermal and magmatic processes. The mass balance of each of the six largest ice caps (90% of Iceland’s permanent ice cover) is calculated independently for the first time using spaceborne radar altimetry data. Between October 2010 and September 2015 Icelandic ice caps have lost a total of 5.8± 0.7 Gt a ̄1, contributing 0.016± 0.002 mm a ̄1 to eustatic sea level rise. This estimate indicates that over this period the mass balance was 40% less negative than the preceding 15 years, a fact which partly reflects the anomalous positive balance year across the Vatnaj ̈okull ice cap (~ 70% of the glaciated area) in 2014/15. Furthermore, it is demonstrated how swath processing of CryoSat-2 interferometric data allows the monitoring of glaciological processes at the catchment scale. Comparison of the geodetic estimates of mass balance against those based on in situ data shows good agreement. The thesis then investigates surface elevation change on the Northern and Southern Patagonian Ice Fields to quantify their mass balance. This area is characterized by some of the fastest flowing glaciers in the world, displaying complex interactions with the proglacial environments (including marine fjords and freshwater lakes) they often drain into. Field observations are sparse due to the inaccessibility of these ice fields and even remotely sensed data are limited, often tied to comparisons to the topography in 2000 as measured by the Shuttle Radar Topography Mission. Despite gaps in the spatial coverage, in particular due to the complex topography, CryoSat-2 swath radar altimetry provides insight into the patterns of change on the ice fields in the most recent period (2011 to 2017) and allows to independently calculate the mass balance of glaciers or catchments as small as 300 km2. The northern part of the Southern Patagonian ice field displays the strongest losses due to a combination between ice dynamics and warming temperatures. In contrast Pio XI, the largest glacier on this ice field and in South America, is advancing and gaining mass. Between April 2011 and march 2017, the two ice fields combined have lost an average of 21.29± 1.98 Gt a ̄1 (equivalent to 0.059± 0.005 mm a ̄1 eustatic sea level rise), 24% and 42% more negative when compared to the periods 2000-2012/14 and 1975-2000. In particular the Northern Patagonian ice field, responsible for one third of the mass loss, is losing mass 70% faster compared to the first decade of the 21st century. These results confirm the overall strong mass loss of the Patagonian ice fields, second only to glaciers and ice caps in Alaska and the Canadian Arctic, and higher than High Mountain Asia, which all extend over areas ~ 5-8 times larger (excluding glaciers at the periphery of the Greenland and Antarctic ice sheets).

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:743848
Date January 2018
CreatorsForesta, Luca Umberto
ContributorsGourmelen, Noel ; Nienow, Peter
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/31165

Page generated in 0.0015 seconds