Return to search

Role of G1 phase regulators during corticogenesis / Rôle des régulateurs de la phase G1 du cycle cellulaire dans la corticogenèse

Les mécanismes développementaux qui spécifient le nombre et le phénotype laminaire des neurones du cortex cérébral jouent un rôle essentiel dans l’établissement de la cytoarchitecture corticale. Le nombre de neurones dans chaque couche d'une aire donnée est déterminé par le taux de production neuronale, qui dépend étroitement de l'équilibre entre les divisions prolifératives et différenciatives. Des observations clés suggèrent que la durée de la phase G1 (TG1) ferait partie intégrante d'un mécanisme cellulaire régulant le mode de division des précurseurs du cortex. Nous avons testé cette hypothèse par l'accélération expérimentale de la progression dans la phase G1 de précurseurs corticaux de souris in vivo, via la surexpression des cyclines E1 et D1. A E15, la réduction de TG1 promeut la rentrée dans le cycle cellulaire aux dépens de la différenciation neuronale, résultant en une modification de la cytoarchitecture du cortex adulte. Des données de modélisation confirment que les effets induits par la réduction de TG1 sont médiés par des changements du mode de division. Les effets de la surexpression des cyclines E1 et D2 à E13 sont plus modérés qu'à E15, indiquant des différences intrinsèques entre les précurseurs corticaux précoces et tardifs. La mesure des phases du cycle cellulaire des populations de précurseurs corticaux à l’aide de différentes techniques révèle un niveau important d’hétérogénéité et souligne la nécessité de prendre en compte la diversité des précurseurs co‐existant dans les zones germinales du télencéphale. / In the cerebral cortex, area‐specific differences in neuron number and phenotype are distinguishing features both within and across species. The developmental mechanisms that specify the number of neurons and their laminar fate are instrumental in specifying cortical cytoarchitecture. Neuron number in layers and areas correlate with changes in the rate of neuron production, largely determined by the balance between proliferative and differentiative divisions in cortical precursors. Key observations suggest a concerted regulation between the duration of the G1 phase (TG1) and mode of division and have led to the hypothesis that TG1 could be an integral part of a cellular mechanism regulating the mode of division of cortical precursors. To test this hypothesis we experimentally accelerated TG1 in mouse cortical precursors in vivo, via the forced expression of cyclinE1 and cyclinD1. At E15, TG1 reduction promoted cell‐cycle re‐entry at the expense of differentiation and led to cytoarchitectural modifications. Modeling confirms that the TG1‐induced changes in neuron production and laminar fate are mediated via the changes in the mode of division. Forced expression of G1 cyclins was also applied to early cortical precursors. The effects of cyclinD1 and cyclinE1 up‐regulation at E13 were milder than those observed at E15, pointing to intrinsic differences between early and late cortical precursors. The used of various techniques to measure cell‐cycle kinetics in distinct precursor populations underlined the necessity of taking the full diversity of neural precursors co‐existing in the GZ of the telencephalon into account when performing cellcycle kinetics analysis.

Identiferoai:union.ndltd.org:theses.fr/2009LYO10277
Date15 December 2009
CreatorsPilaz, Louis-Jan
ContributorsLyon 1, Dehay, Colette
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds