L'objectif de cette thèse est de mettre en évidence l'influence de la microstructure initiale sur le glissement intergranulaire lors du fluage à haute température d'un superalliage polycristallin à base de nickel. Dans ce but, plusieurs microstructures sont obtenues à partir de la microstructure de référence de l'alliage NR6, par application de traitements thermiques spécifiques. L'influence des paramètres microstructuraux sur les déformations locales est ensuite étudiée à l'aide d'une technique de microextensométrie couplée à une analyse par diffraction des électrons rétrodiffusés. Il est ainsi possible de relier microstructure, déformations locales et comportement macroscopique en fluage. Pour la microstructure de référence de l'alliage NR6, la déformation opère principalement par cisaillement des phases γ et γ'. Ce mécanisme est favorable au glissement intergranulaire. L'absence de précipités tertiaires de phase γ' favorise le contournement des précipités secondaires par les dislocations. Ceci permet de réduire le glissement intergranulaire mais est également néfaste pour la résistance à la déformation de l'alliage. La présence de joints de grains dentelés augmente la résistance au glissement intergranulaire mais diminue la résistance à la déformation intragranulaire en favorisant le contournement des précipités. Ainsi la résistance globale à la déformation n'est pas affectée. Enfin, l'augmentation de la taille de grains n'a d'influence ni sur les mécanismes de déformation mis en jeu ni sur l'amplitude du glissement. Cependant, la fraction moins élevée de joints de grains induit une diminution de la contribution du glissement intergranulaire à la déformation globale. / The aim of this study is to highlight the influence of initial microstructure on grain boundary sliding during high-temperature creep of a polycrystalline nickel-based superalloy. To reach this goal, several microstructures are produced from the reference microstructure of NR6 alloy by adequate heat treatments. The influence of microstructural parameters on local deformations is then studied thanks to a microextensometry technique coupled with an electron back-scattered diffraction analysis. It thereby enables linking microstructure, local deformations and macroscopic creep behaviour. In the case of NR6 alloy reference microstructure, deformation occurs mainly by γ and γ' phases cutting by dislocations. This mechanism is grain boundary sliding-favourable. The absence of tertiary γ' phase precipitates promotes secondary precipitates bypassing by dislocations. This results in a reduction of grain boundary sliding but is also harmful to the alloy creep resistance. Grain boundary serration improves grain boundary sliding resistance but diminishes intragranular deformation resistance by favouring precipitate bypassing. Then global deformation resistance is not changed. Finally, grain size increase has influence neither on activated deformation mechanisms nor on sliding amplitude. However, the decrease of grain boundary fraction leads to a reduction of grain boundary sliding contribution to overall strain.
Identifer | oai:union.ndltd.org:theses.fr/2012GRENI038 |
Date | 19 December 2012 |
Creators | Thibault, Kevin |
Contributors | Grenoble, Bréchet, Yves, Locq, Didier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds