Return to search

PathoSpotter: um sistema para classifica??o de glomerulopatias a partir de imagens histol?gicas renais

Submitted by Ricardo Cedraz Duque Moliterno (ricardo.moliterno@uefs.br) on 2016-09-13T21:44:53Z
No. of bitstreams: 1
Disserta??o_George.pdf: 4996097 bytes, checksum: ece2301b72ccb1d9d33a2e2837531079 (MD5) / Made available in DSpace on 2016-09-13T21:44:53Z (GMT). No. of bitstreams: 1
Disserta??o_George.pdf: 4996097 bytes, checksum: ece2301b72ccb1d9d33a2e2837531079 (MD5)
Previous issue date: 2016-02-29 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / The realization of an accurate diagnosis from histological images requires pathologists with practical experience because the characteristics of these images lead to a subjective analysis, which often hamper the accuracy of diagnosis. Systems that help to achieve better diagnoses can minimize doubts and improve the quality of diagnosis, influencing on increasing the effectiveness of medical treatments. This paper describes the research and development of PathoSpotter, a computer system to aid in the identification of diseases from histological images. The PathoSpotter proposes to reduce the lack of support work to histopathological diagnosis of renal diseases since much has been done in the area of cancer, but there is few published material in relation to the Digital Pathology applied to nephrology and hepatology. Our goal in this study was to apply the PathoSpotter the classification of proliferative glomerulopathy, which is a family of primary diseases affecting the kidneys. The work was based on a data set consisting of 811 histological pictures glomeruli and classical techniques of processing digital images and histopathology were used. The PathoSpotter presented a performance of 88.4% accuracy, which was similar to other Digital Pathology jobs that can be found in the literature. / A realiza??o do diagn?stico preciso a partir de imagens histol?gicas requer m?dicos patologistas com vasta experi?ncia pr?tica, pois as caracter?sticas dessas imagens conduzem a uma an?lise subjetiva que muitas vezes dificultam a exatid?o do diagn?stico. Sistemas que auxiliam a obten??o de melhores diagn?sticos podem minimizar d?vidas e melhorar a qualidade dos diagn?sticos, influenciando no aumento da efic?cia dos tratamentos m?dicos. Este trabalho descreve a pesquisa e o desenvolvimento do PathoSpotter, um sistema computacional para aux?lio na identifica??o de patologias a partir de imagens histol?gicas. O PathoSpotter se prop?e a reduzir a car?ncia de trabalhos de apoio ao diagn?stico histopatol?gico das doen?as renais, j? que muito tem sido feito na ?rea de neoplasias, mas h? pouco material publicado em rela??o ? Patologia Digital aplicada ? nefrologia ou hepatologia. Nosso objetivo neste trabalho foi aplicar o PathoSpotter na classifica??o das glomerulopatias proliferativas, que ? uma fam?lia de doen?as prim?rias que afetam os rins. O trabalho se baseou em um conjunto de dados composto por 811 imagens histol?gicas de glom?rulos, e foram utilizadas t?cnicas cl?ssicas de processamento de imagens e histopatologia digital. O PathoSpotter apresentou um desempenho de 88,4% de acur?cia, resultado similar ao de outros trabalhos de Patologia Digital que podem ser encontrados na literatura especializada.

Identiferoai:union.ndltd.org:IBICT/oai:tede2.uefs.br:8080:tede/389
Date29 February 2016
CreatorsBarros, George Oliveira
ContributorsDuarte, Angelo Am?ncio
PublisherUniversidade Estadual de Feira de Santana, Mestrado em Computa??o Aplicada, UEFS, Brasil, DEPARTAMENTO DE TECNOLOGIA
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UEFS, instname:Universidade Estadual de Feira de Santana, instacron:UEFS
Rightsinfo:eu-repo/semantics/openAccess
Relation303317282311144204, 600, 600, 600, 600, 4335108523020347051, -862078257083325301, 3590462550136975366

Page generated in 0.0026 seconds